Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecexg | Structured version Visualization version GIF version |
Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
ecexg | ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8458 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imaexg 7736 | . 2 ⊢ (𝑅 ∈ 𝐵 → (𝑅 “ {𝐴}) ∈ V) | |
3 | 1, 2 | eqeltrid 2843 | 1 ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 {csn 4558 “ cima 5583 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: ecelqsg 8519 uniqs 8524 eroveu 8559 erov 8561 addsrpr 10762 mulsrpr 10763 quslem 17171 eqgen 18724 qusghm 18786 sylow2blem1 19140 vrgpval 19288 znzrhval 20666 qustgpopn 23179 qustgplem 23180 elpi1 24114 pi1xfrval 24123 pi1xfrcnvlem 24125 pi1xfrcnv 24126 pi1cof 24128 pi1coval 24129 tgjustr 26739 qusker 31451 qusvscpbl 31453 qusscaval 31454 pstmfval 31748 fvline 34373 ecex2 36390 |
Copyright terms: Public domain | W3C validator |