| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecexg | Structured version Visualization version GIF version | ||
| Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) |
| Ref | Expression |
|---|---|
| ecexg | ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 8673 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | imaexg 7889 | . 2 ⊢ (𝑅 ∈ 𝐵 → (𝑅 “ {𝐴}) ∈ V) | |
| 3 | 1, 2 | eqeltrid 2832 | 1 ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 {csn 4589 “ cima 5641 [cec 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 |
| This theorem is referenced by: elecex 8721 eroveu 8785 erov 8787 addsrpr 11028 mulsrpr 11029 quslem 17506 eqgen 19113 qusghm 19187 ghmquskerco 19216 sylow2blem1 19550 vrgpval 19697 rngqiprngimf1 21210 znzrhval 21456 qustgpopn 24007 qustgplem 24008 elpi1 24945 pi1xfrval 24954 pi1xfrcnvlem 24956 pi1xfrcnv 24957 pi1cof 24959 pi1coval 24960 tgjustr 28401 rlocf1 33224 qusker 33320 qusvscpbl 33322 qusvsval 33323 qusrn 33380 zringfrac 33525 pstmfval 33886 fvline 36132 |
| Copyright terms: Public domain | W3C validator |