![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecexg | Structured version Visualization version GIF version |
Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
ecexg | ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8711 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imaexg 7910 | . 2 ⊢ (𝑅 ∈ 𝐵 → (𝑅 “ {𝐴}) ∈ V) | |
3 | 1, 2 | eqeltrid 2836 | 1 ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3473 {csn 4628 “ cima 5679 [cec 8707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8711 |
This theorem is referenced by: ecelqsg 8772 uniqs 8777 eroveu 8812 erov 8814 addsrpr 11076 mulsrpr 11077 quslem 17496 eqgen 19104 qusghm 19176 sylow2blem1 19536 vrgpval 19683 rngqiprngimf1 21147 znzrhval 21411 qustgpopn 23943 qustgplem 23944 elpi1 24891 pi1xfrval 24900 pi1xfrcnvlem 24902 pi1xfrcnv 24903 pi1cof 24905 pi1coval 24906 tgjustr 28157 qusker 32899 qusvscpbl 32901 qusvsval 32902 qusrn 32959 ghmquskerco 32968 pstmfval 33339 fvline 35585 ecex2 37660 |
Copyright terms: Public domain | W3C validator |