![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecexg | Structured version Visualization version GIF version |
Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
ecexg | ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8745 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imaexg 7935 | . 2 ⊢ (𝑅 ∈ 𝐵 → (𝑅 “ {𝐴}) ∈ V) | |
3 | 1, 2 | eqeltrid 2842 | 1 ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 {csn 4630 “ cima 5691 [cec 8741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ec 8745 |
This theorem is referenced by: ecelqsg 8810 uniqs 8815 eroveu 8850 erov 8852 addsrpr 11112 mulsrpr 11113 quslem 17589 eqgen 19211 qusghm 19285 ghmquskerco 19314 sylow2blem1 19652 vrgpval 19799 rngqiprngimf1 21327 znzrhval 21582 qustgpopn 24143 qustgplem 24144 elpi1 25091 pi1xfrval 25100 pi1xfrcnvlem 25102 pi1xfrcnv 25103 pi1cof 25105 pi1coval 25106 tgjustr 28496 rlocf1 33259 qusker 33356 qusvscpbl 33358 qusvsval 33359 qusrn 33416 zringfrac 33561 pstmfval 33856 fvline 36125 ecex2 38309 |
Copyright terms: Public domain | W3C validator |