| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecexg | Structured version Visualization version GIF version | ||
| Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) |
| Ref | Expression |
|---|---|
| ecexg | ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 8624 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | imaexg 7843 | . 2 ⊢ (𝑅 ∈ 𝐵 → (𝑅 “ {𝐴}) ∈ V) | |
| 3 | 1, 2 | eqeltrid 2835 | 1 ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 {csn 4576 “ cima 5619 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 |
| This theorem is referenced by: elecex 8672 eroveu 8736 erov 8738 addsrpr 10963 mulsrpr 10964 quslem 17444 eqgen 19091 qusghm 19165 ghmquskerco 19194 sylow2blem1 19530 vrgpval 19677 rngqiprngimf1 21235 znzrhval 21481 qustgpopn 24033 qustgplem 24034 elpi1 24970 pi1xfrval 24979 pi1xfrcnvlem 24981 pi1xfrcnv 24982 pi1cof 24984 pi1coval 24985 tgjustr 28450 rlocf1 33235 qusker 33309 qusvscpbl 33311 qusvsval 33312 qusrn 33369 zringfrac 33514 pstmfval 33904 fvline 36177 |
| Copyright terms: Public domain | W3C validator |