| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecexg | Structured version Visualization version GIF version | ||
| Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) |
| Ref | Expression |
|---|---|
| ecexg | ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 8719 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | imaexg 7907 | . 2 ⊢ (𝑅 ∈ 𝐵 → (𝑅 “ {𝐴}) ∈ V) | |
| 3 | 1, 2 | eqeltrid 2838 | 1 ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 {csn 4601 “ cima 5657 [cec 8715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8719 |
| This theorem is referenced by: ecelqsg 8784 uniqs 8789 eroveu 8824 erov 8826 addsrpr 11087 mulsrpr 11088 quslem 17555 eqgen 19162 qusghm 19236 ghmquskerco 19265 sylow2blem1 19599 vrgpval 19746 rngqiprngimf1 21259 znzrhval 21505 qustgpopn 24056 qustgplem 24057 elpi1 24994 pi1xfrval 25003 pi1xfrcnvlem 25005 pi1xfrcnv 25006 pi1cof 25008 pi1coval 25009 tgjustr 28399 rlocf1 33214 qusker 33310 qusvscpbl 33312 qusvsval 33313 qusrn 33370 zringfrac 33515 pstmfval 33873 fvline 36108 ecex2 38292 |
| Copyright terms: Public domain | W3C validator |