![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecexg | Structured version Visualization version GIF version |
Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
ecexg | ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8765 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imaexg 7953 | . 2 ⊢ (𝑅 ∈ 𝐵 → (𝑅 “ {𝐴}) ∈ V) | |
3 | 1, 2 | eqeltrid 2848 | 1 ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 {csn 4648 “ cima 5703 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: ecelqsg 8830 uniqs 8835 eroveu 8870 erov 8872 addsrpr 11144 mulsrpr 11145 quslem 17603 eqgen 19221 qusghm 19295 ghmquskerco 19324 sylow2blem1 19662 vrgpval 19809 rngqiprngimf1 21333 znzrhval 21588 qustgpopn 24149 qustgplem 24150 elpi1 25097 pi1xfrval 25106 pi1xfrcnvlem 25108 pi1xfrcnv 25109 pi1cof 25111 pi1coval 25112 tgjustr 28500 rlocf1 33245 qusker 33342 qusvscpbl 33344 qusvsval 33345 qusrn 33402 zringfrac 33547 pstmfval 33842 fvline 36108 ecex2 38284 |
Copyright terms: Public domain | W3C validator |