Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecexg | Structured version Visualization version GIF version |
Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) |
Ref | Expression |
---|---|
ecexg | ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8500 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imaexg 7762 | . 2 ⊢ (𝑅 ∈ 𝐵 → (𝑅 “ {𝐴}) ∈ V) | |
3 | 1, 2 | eqeltrid 2843 | 1 ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 {csn 4561 “ cima 5592 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: ecelqsg 8561 uniqs 8566 eroveu 8601 erov 8603 addsrpr 10831 mulsrpr 10832 quslem 17254 eqgen 18809 qusghm 18871 sylow2blem1 19225 vrgpval 19373 znzrhval 20754 qustgpopn 23271 qustgplem 23272 elpi1 24208 pi1xfrval 24217 pi1xfrcnvlem 24219 pi1xfrcnv 24220 pi1cof 24222 pi1coval 24223 tgjustr 26835 qusker 31549 qusvscpbl 31551 qusscaval 31552 pstmfval 31846 fvline 34446 ecex2 36463 |
Copyright terms: Public domain | W3C validator |