| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecexg | Structured version Visualization version GIF version | ||
| Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) |
| Ref | Expression |
|---|---|
| ecexg | ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 8630 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | imaexg 7849 | . 2 ⊢ (𝑅 ∈ 𝐵 → (𝑅 “ {𝐴}) ∈ V) | |
| 3 | 1, 2 | eqeltrid 2837 | 1 ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 {csn 4575 “ cima 5622 [cec 8626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 |
| This theorem is referenced by: elecex 8678 eroveu 8742 erov 8744 addsrpr 10973 mulsrpr 10974 quslem 17449 eqgen 19095 qusghm 19169 ghmquskerco 19198 sylow2blem1 19534 vrgpval 19681 rngqiprngimf1 21239 znzrhval 21485 qustgpopn 24036 qustgplem 24037 elpi1 24973 pi1xfrval 24982 pi1xfrcnvlem 24984 pi1xfrcnv 24985 pi1cof 24987 pi1coval 24988 tgjustr 28453 rlocf1 33247 qusker 33321 qusvscpbl 33323 qusvsval 33324 qusrn 33381 zringfrac 33526 pstmfval 33930 fvline 36209 |
| Copyright terms: Public domain | W3C validator |