Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqg1ALT Structured version   Visualization version   GIF version

Theorem bj-ideqg1ALT 36697
Description: Alternate proof of bj-ideqg1 using brabga 5531 instead of the "unbounded" version bj-brab2a1 36681 or brab2a 5766. (Contributed by BJ, 25-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.)

TODO: delete once bj-ideqg 36689 is in the main section.

Assertion
Ref Expression
bj-ideqg1ALT ((𝐴𝑉𝐵𝑊) → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem bj-ideqg1ALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5823 . . . 4 Rel I
21brrelex12i 5728 . . 3 (𝐴 I 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32adantl 480 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 elex 3482 . . . . 5 (𝐴𝑉𝐴 ∈ V)
54adantr 479 . . . 4 ((𝐴𝑉𝐴 = 𝐵) → 𝐴 ∈ V)
6 eleq1 2813 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝑊𝐵𝑊))
76biimparc 478 . . . . 5 ((𝐵𝑊𝐴 = 𝐵) → 𝐴𝑊)
87elexd 3485 . . . 4 ((𝐵𝑊𝐴 = 𝐵) → 𝐴 ∈ V)
95, 8jaoian 954 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → 𝐴 ∈ V)
10 eleq1 2813 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉))
1110biimpac 477 . . . . 5 ((𝐴𝑉𝐴 = 𝐵) → 𝐵𝑉)
1211elexd 3485 . . . 4 ((𝐴𝑉𝐴 = 𝐵) → 𝐵 ∈ V)
13 elex 3482 . . . . 5 (𝐵𝑊𝐵 ∈ V)
1413adantr 479 . . . 4 ((𝐵𝑊𝐴 = 𝐵) → 𝐵 ∈ V)
1512, 14jaoian 954 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → 𝐵 ∈ V)
169, 15jca 510 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
17 eqeq12 2742 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
18 df-id 5571 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1917, 18brabga 5531 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
203, 16, 19pm5.21nd 800 1 ((𝐴𝑉𝐵𝑊) → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  Vcvv 3463   class class class wbr 5144   I cid 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator