Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-idreseqb Structured version   Visualization version   GIF version

Theorem bj-idreseqb 35261
Description: Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023.)
Assertion
Ref Expression
bj-idreseqb (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵))

Proof of Theorem bj-idreseqb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5909 . . 3 Rel ( I ↾ 𝐶)
21brrelex12i 5633 . 2 (𝐴( I ↾ 𝐶)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 simpl 482 . . . 4 ((𝐴𝐶𝐴 = 𝐵) → 𝐴𝐶)
43elexd 3442 . . 3 ((𝐴𝐶𝐴 = 𝐵) → 𝐴 ∈ V)
5 eleq1 2826 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
65biimpac 478 . . . 4 ((𝐴𝐶𝐴 = 𝐵) → 𝐵𝐶)
76elexd 3442 . . 3 ((𝐴𝐶𝐴 = 𝐵) → 𝐵 ∈ V)
84, 7jca 511 . 2 ((𝐴𝐶𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 brres 5887 . . . 4 (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
109adantl 481 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
11 eqeq12 2755 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
12 df-id 5480 . . . . 5 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1311, 12brabga 5440 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
1413anbi2d 628 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐶𝐴 I 𝐵) ↔ (𝐴𝐶𝐴 = 𝐵)))
1510, 14bitrd 278 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵)))
162, 8, 15pm5.21nii 379 1 (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070   I cid 5479  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-res 5592
This theorem is referenced by:  bj-elid7  35269
  Copyright terms: Public domain W3C validator