![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-idreseqb | Structured version Visualization version GIF version |
Description: Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023.) |
Ref | Expression |
---|---|
bj-idreseqb | ⊢ (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6010 | . . 3 ⊢ Rel ( I ↾ 𝐶) | |
2 | 1 | brrelex12i 5731 | . 2 ⊢ (𝐴( I ↾ 𝐶)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
4 | 3 | elexd 3494 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) |
5 | eleq1 2820 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
6 | 5 | biimpac 478 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝐶) |
7 | 6 | elexd 3494 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐵 ∈ V) |
8 | 4, 7 | jca 511 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
9 | brres 5988 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵))) | |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵))) |
11 | eqeq12 2748 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
12 | df-id 5574 | . . . . 5 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
13 | 11, 12 | brabga 5534 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
14 | 13 | anbi2d 628 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵) ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵))) |
15 | 10, 14 | bitrd 279 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵))) |
16 | 2, 8, 15 | pm5.21nii 378 | 1 ⊢ (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 class class class wbr 5148 I cid 5573 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-res 5688 |
This theorem is referenced by: bj-elid7 36518 |
Copyright terms: Public domain | W3C validator |