Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-idreseqb Structured version   Visualization version   GIF version

Theorem bj-idreseqb 34578
Description: Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023.)
Assertion
Ref Expression
bj-idreseqb (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵))

Proof of Theorem bj-idreseqb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5847 . . 3 Rel ( I ↾ 𝐶)
21brrelex12i 5571 . 2 (𝐴( I ↾ 𝐶)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 simpl 486 . . . 4 ((𝐴𝐶𝐴 = 𝐵) → 𝐴𝐶)
43elexd 3461 . . 3 ((𝐴𝐶𝐴 = 𝐵) → 𝐴 ∈ V)
5 eleq1 2877 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
65biimpac 482 . . . 4 ((𝐴𝐶𝐴 = 𝐵) → 𝐵𝐶)
76elexd 3461 . . 3 ((𝐴𝐶𝐴 = 𝐵) → 𝐵 ∈ V)
84, 7jca 515 . 2 ((𝐴𝐶𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 brres 5825 . . . 4 (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
109adantl 485 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
11 eqeq12 2812 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
12 df-id 5425 . . . . 5 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1311, 12brabga 5386 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
1413anbi2d 631 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐶𝐴 I 𝐵) ↔ (𝐴𝐶𝐴 = 𝐵)))
1510, 14bitrd 282 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵)))
162, 8, 15pm5.21nii 383 1 (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441   class class class wbr 5030   I cid 5424  cres 5521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-res 5531
This theorem is referenced by:  bj-elid7  34586
  Copyright terms: Public domain W3C validator