![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-idreseqb | Structured version Visualization version GIF version |
Description: Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023.) |
Ref | Expression |
---|---|
bj-idreseqb | ⊢ (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6026 | . . 3 ⊢ Rel ( I ↾ 𝐶) | |
2 | 1 | brrelex12i 5744 | . 2 ⊢ (𝐴( I ↾ 𝐶)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
4 | 3 | elexd 3502 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) |
5 | eleq1 2827 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
6 | 5 | biimpac 478 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝐶) |
7 | 6 | elexd 3502 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐵 ∈ V) |
8 | 4, 7 | jca 511 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
9 | brres 6007 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵))) | |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵))) |
11 | eqeq12 2752 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
12 | df-id 5583 | . . . . 5 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
13 | 11, 12 | brabga 5544 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
14 | 13 | anbi2d 630 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵) ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵))) |
15 | 10, 14 | bitrd 279 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵))) |
16 | 2, 8, 15 | pm5.21nii 378 | 1 ⊢ (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 I cid 5582 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-res 5701 |
This theorem is referenced by: bj-elid7 37154 |
Copyright terms: Public domain | W3C validator |