| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-idreseqb | Structured version Visualization version GIF version | ||
| Description: Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-idreseqb | ⊢ (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5953 | . . 3 ⊢ Rel ( I ↾ 𝐶) | |
| 2 | 1 | brrelex12i 5669 | . 2 ⊢ (𝐴( I ↾ 𝐶)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
| 4 | 3 | elexd 3460 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) |
| 5 | eleq1 2819 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 6 | 5 | biimpac 478 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝐶) |
| 7 | 6 | elexd 3460 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐵 ∈ V) |
| 8 | 4, 7 | jca 511 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 9 | brres 5934 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵))) | |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵))) |
| 11 | eqeq12 2748 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 12 | df-id 5509 | . . . . 5 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 13 | 11, 12 | brabga 5472 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| 14 | 13 | anbi2d 630 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵) ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵))) |
| 15 | 10, 14 | bitrd 279 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵))) |
| 16 | 2, 8, 15 | pm5.21nii 378 | 1 ⊢ (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 I cid 5508 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-res 5626 |
| This theorem is referenced by: bj-elid7 37215 |
| Copyright terms: Public domain | W3C validator |