Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-idreseqb Structured version   Visualization version   GIF version

Theorem bj-idreseqb 37151
Description: Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023.)
Assertion
Ref Expression
bj-idreseqb (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵))

Proof of Theorem bj-idreseqb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5976 . . 3 Rel ( I ↾ 𝐶)
21brrelex12i 5693 . 2 (𝐴( I ↾ 𝐶)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 simpl 482 . . . 4 ((𝐴𝐶𝐴 = 𝐵) → 𝐴𝐶)
43elexd 3471 . . 3 ((𝐴𝐶𝐴 = 𝐵) → 𝐴 ∈ V)
5 eleq1 2816 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
65biimpac 478 . . . 4 ((𝐴𝐶𝐴 = 𝐵) → 𝐵𝐶)
76elexd 3471 . . 3 ((𝐴𝐶𝐴 = 𝐵) → 𝐵 ∈ V)
84, 7jca 511 . 2 ((𝐴𝐶𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 brres 5957 . . . 4 (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
109adantl 481 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
11 eqeq12 2746 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
12 df-id 5533 . . . . 5 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1311, 12brabga 5494 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
1413anbi2d 630 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐶𝐴 I 𝐵) ↔ (𝐴𝐶𝐴 = 𝐵)))
1510, 14bitrd 279 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵)))
162, 8, 15pm5.21nii 378 1 (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107   I cid 5532  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-res 5650
This theorem is referenced by:  bj-elid7  37159
  Copyright terms: Public domain W3C validator