Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-idreseqb Structured version   Visualization version   GIF version

Theorem bj-idreseqb 36348
Description: Characterization for two classes to be related under the restricted identity relation. (Contributed by BJ, 24-Dec-2023.)
Assertion
Ref Expression
bj-idreseqb (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵))

Proof of Theorem bj-idreseqb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6011 . . 3 Rel ( I ↾ 𝐶)
21brrelex12i 5732 . 2 (𝐴( I ↾ 𝐶)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 simpl 482 . . . 4 ((𝐴𝐶𝐴 = 𝐵) → 𝐴𝐶)
43elexd 3494 . . 3 ((𝐴𝐶𝐴 = 𝐵) → 𝐴 ∈ V)
5 eleq1 2820 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
65biimpac 478 . . . 4 ((𝐴𝐶𝐴 = 𝐵) → 𝐵𝐶)
76elexd 3494 . . 3 ((𝐴𝐶𝐴 = 𝐵) → 𝐵 ∈ V)
84, 7jca 511 . 2 ((𝐴𝐶𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 brres 5989 . . . 4 (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
109adantl 481 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
11 eqeq12 2748 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
12 df-id 5575 . . . . 5 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1311, 12brabga 5535 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
1413anbi2d 628 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐶𝐴 I 𝐵) ↔ (𝐴𝐶𝐴 = 𝐵)))
1510, 14bitrd 278 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵)))
162, 8, 15pm5.21nii 378 1 (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wcel 2105  Vcvv 3473   class class class wbr 5149   I cid 5574  cres 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-res 5689
This theorem is referenced by:  bj-elid7  36356
  Copyright terms: Public domain W3C validator