| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ideqg | Structured version Visualization version GIF version | ||
| Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ideqg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉) | |
| 2 | reli 5792 | . . . 4 ⊢ Rel I | |
| 3 | 2 | brrelex1i 5697 | . . 3 ⊢ (𝐴 I 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | anim12ci 614 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
| 5 | eleq1 2817 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
| 6 | 5 | biimparc 479 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
| 7 | 6 | elexd 3474 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) |
| 8 | simpl 482 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑉) | |
| 9 | 7, 8 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
| 10 | eqeq1 2734 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 11 | eqeq2 2742 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 12 | df-id 5536 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 13 | 10, 11, 12 | brabg 5502 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| 14 | 4, 9, 13 | pm5.21nd 801 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 I cid 5535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: ideq 5819 ididg 5820 poleloe 6107 isof1oidb 7302 pltval 18298 tglngne 28484 tgelrnln 28564 opeldifid 32535 ideq2 38302 idinxpss 38307 inxpssidinxp 38311 idinxpssinxp 38312 cnvref5 38340 rnxrnidres 38394 cossid 38478 fourierdlem42 46154 |
| Copyright terms: Public domain | W3C validator |