MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideqg Structured version   Visualization version   GIF version

Theorem ideqg 5694
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem ideqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐵𝑉𝐵𝑉)
2 reli 5670 . . . 4 Rel I
32brrelex1i 5579 . . 3 (𝐴 I 𝐵𝐴 ∈ V)
41, 3anim12ci 617 . 2 ((𝐵𝑉𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
5 eleq1 2820 . . . . 5 (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉))
65biimparc 483 . . . 4 ((𝐵𝑉𝐴 = 𝐵) → 𝐴𝑉)
76elexd 3418 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐴 ∈ V)
8 simpl 486 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐵𝑉)
97, 8jca 515 . 2 ((𝐵𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
10 eqeq1 2742 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
11 eqeq2 2750 . . 3 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
12 df-id 5429 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1310, 11, 12brabg 5394 . 2 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 I 𝐵𝐴 = 𝐵))
144, 9, 13pm5.21nd 802 1 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  Vcvv 3398   class class class wbr 5030   I cid 5428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532
This theorem is referenced by:  ideq  5695  ididg  5696  poleloe  5965  isof1oidb  7090  pltval  17686  tglngne  26496  tgelrnln  26576  opeldifid  30512  ideq2  36066  idinxpss  36071  inxpssidinxp  36074  idinxpssinxp  36075  rnxrnidres  36150  cossid  36221  fourierdlem42  43232
  Copyright terms: Public domain W3C validator