![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ideqg | Structured version Visualization version GIF version |
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ideqg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉) | |
2 | reli 5452 | . . . 4 ⊢ Rel I | |
3 | 2 | brrelex1i 5362 | . . 3 ⊢ (𝐴 I 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | anim12ci 608 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
5 | eleq1 2865 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
6 | 5 | biimparc 472 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
7 | 6 | elexd 3401 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) |
8 | simpl 475 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑉) | |
9 | 7, 8 | jca 508 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
10 | eqeq1 2802 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
11 | eqeq2 2809 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
12 | df-id 5219 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
13 | 10, 11, 12 | brabg 5189 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
14 | 4, 9, 13 | pm5.21nd 837 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3384 class class class wbr 4842 I cid 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pr 5096 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3386 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-if 4277 df-sn 4368 df-pr 4370 df-op 4374 df-br 4843 df-opab 4905 df-id 5219 df-xp 5317 df-rel 5318 |
This theorem is referenced by: ideq 5477 ididg 5478 poleloe 5744 isof1oidb 6801 pltval 17272 tglngne 25794 tgelrnln 25874 opeldifid 29922 ideq2 34566 idinxpss 34571 inxpssidinxp 34574 idinxpssinxp 34575 rnxrnidres 34646 cossid 34717 fourierdlem42 41098 |
Copyright terms: Public domain | W3C validator |