MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideqg Structured version   Visualization version   GIF version

Theorem ideqg 5815
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem ideqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐵𝑉𝐵𝑉)
2 reli 5789 . . . 4 Rel I
32brrelex1i 5694 . . 3 (𝐴 I 𝐵𝐴 ∈ V)
41, 3anim12ci 614 . 2 ((𝐵𝑉𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
5 eleq1 2816 . . . . 5 (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉))
65biimparc 479 . . . 4 ((𝐵𝑉𝐴 = 𝐵) → 𝐴𝑉)
76elexd 3471 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐴 ∈ V)
8 simpl 482 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐵𝑉)
97, 8jca 511 . 2 ((𝐵𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
10 eqeq1 2733 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
11 eqeq2 2741 . . 3 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
12 df-id 5533 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1310, 11, 12brabg 5499 . 2 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 I 𝐵𝐴 = 𝐵))
144, 9, 13pm5.21nd 801 1 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107   I cid 5532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645
This theorem is referenced by:  ideq  5816  ididg  5817  poleloe  6104  isof1oidb  7299  pltval  18291  tglngne  28477  tgelrnln  28557  opeldifid  32528  ideq2  38295  idinxpss  38300  inxpssidinxp  38304  idinxpssinxp  38305  cnvref5  38333  rnxrnidres  38387  cossid  38471  fourierdlem42  46147
  Copyright terms: Public domain W3C validator