MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideqg Structured version   Visualization version   GIF version

Theorem ideqg 5858
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem ideqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐵𝑉𝐵𝑉)
2 reli 5832 . . . 4 Rel I
32brrelex1i 5738 . . 3 (𝐴 I 𝐵𝐴 ∈ V)
41, 3anim12ci 612 . 2 ((𝐵𝑉𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
5 eleq1 2817 . . . . 5 (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉))
65biimparc 478 . . . 4 ((𝐵𝑉𝐴 = 𝐵) → 𝐴𝑉)
76elexd 3494 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐴 ∈ V)
8 simpl 481 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐵𝑉)
97, 8jca 510 . 2 ((𝐵𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
10 eqeq1 2732 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
11 eqeq2 2740 . . 3 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
12 df-id 5580 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1310, 11, 12brabg 5545 . 2 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 I 𝐵𝐴 = 𝐵))
144, 9, 13pm5.21nd 800 1 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3473   class class class wbr 5152   I cid 5579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689
This theorem is referenced by:  ideq  5859  ididg  5860  poleloe  6142  isof1oidb  7338  pltval  18331  tglngne  28374  tgelrnln  28454  opeldifid  32410  ideq2  37811  idinxpss  37816  inxpssidinxp  37820  idinxpssinxp  37821  cnvref5  37855  rnxrnidres  37905  cossid  37984  fourierdlem42  45566
  Copyright terms: Public domain W3C validator