MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideqg Structured version   Visualization version   GIF version

Theorem ideqg 5849
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem ideqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐵𝑉𝐵𝑉)
2 reli 5824 . . . 4 Rel I
32brrelex1i 5730 . . 3 (𝐴 I 𝐵𝐴 ∈ V)
41, 3anim12ci 614 . 2 ((𝐵𝑉𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
5 eleq1 2821 . . . . 5 (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉))
65biimparc 480 . . . 4 ((𝐵𝑉𝐴 = 𝐵) → 𝐴𝑉)
76elexd 3494 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐴 ∈ V)
8 simpl 483 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐵𝑉)
97, 8jca 512 . 2 ((𝐵𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
10 eqeq1 2736 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
11 eqeq2 2744 . . 3 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
12 df-id 5573 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1310, 11, 12brabg 5538 . 2 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 I 𝐵𝐴 = 𝐵))
144, 9, 13pm5.21nd 800 1 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3474   class class class wbr 5147   I cid 5572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682
This theorem is referenced by:  ideq  5850  ididg  5851  poleloe  6129  isof1oidb  7317  pltval  18281  tglngne  27790  tgelrnln  27870  opeldifid  31817  ideq2  37164  idinxpss  37169  inxpssidinxp  37173  idinxpssinxp  37174  cnvref5  37208  rnxrnidres  37259  cossid  37338  fourierdlem42  44851
  Copyright terms: Public domain W3C validator