| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ideqg | Structured version Visualization version GIF version | ||
| Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ideqg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉) | |
| 2 | reli 5810 | . . . 4 ⊢ Rel I | |
| 3 | 2 | brrelex1i 5715 | . . 3 ⊢ (𝐴 I 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | anim12ci 614 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
| 5 | eleq1 2823 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
| 6 | 5 | biimparc 479 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
| 7 | 6 | elexd 3488 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) |
| 8 | simpl 482 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑉) | |
| 9 | 7, 8 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
| 10 | eqeq1 2740 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 11 | eqeq2 2748 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 12 | df-id 5553 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 13 | 10, 11, 12 | brabg 5519 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| 14 | 4, 9, 13 | pm5.21nd 801 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 I cid 5552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 |
| This theorem is referenced by: ideq 5837 ididg 5838 poleloe 6125 isof1oidb 7322 pltval 18347 tglngne 28534 tgelrnln 28614 opeldifid 32585 ideq2 38330 idinxpss 38335 inxpssidinxp 38339 idinxpssinxp 38340 cnvref5 38374 rnxrnidres 38424 cossid 38503 fourierdlem42 46145 |
| Copyright terms: Public domain | W3C validator |