MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-id Structured version   Visualization version   GIF version

Theorem ex-id 28219
Description: Example for df-id 5425. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-id (5 I 5 ∧ ¬ 4 I 5)

Proof of Theorem ex-id
StepHypRef Expression
1 eqid 2798 . . 3 5 = 5
2 5re 11712 . . . . 5 5 ∈ ℝ
32elexi 3460 . . . 4 5 ∈ V
43ideq 5687 . . 3 (5 I 5 ↔ 5 = 5)
51, 4mpbir 234 . 2 5 I 5
6 4re 11709 . . . 4 4 ∈ ℝ
7 4lt5 11802 . . . 4 4 < 5
86, 7ltneii 10742 . . 3 4 ≠ 5
93ideq 5687 . . 3 (4 I 5 ↔ 4 = 5)
108, 9nemtbir 3082 . 2 ¬ 4 I 5
115, 10pm3.2i 474 1 (5 I 5 ∧ ¬ 4 I 5)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1538   class class class wbr 5030   I cid 5424  cr 10525  4c4 11682  5c5 11683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-2 11688  df-3 11689  df-4 11690  df-5 11691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator