Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-idreseq Structured version   Visualization version   GIF version

Theorem bj-idreseq 37150
Description: Sufficient condition for the restricted identity relation to agree with equality. Note that the instance of bj-ideqg 37145 with V substituted for 𝑉 is a direct consequence of bj-idreseq 37150. This is a strengthening of resieq 5961 which should be proved from it (note that currently, resieq 5961 relies on ideq 5816). Note that the intersection in the antecedent is not very meaningful, but is a device to prove versions with either class assumed to be a set. It could be enough to prove the version with a disjunctive antecedent: ((𝐴𝐶𝐵𝐶) → ...). (Contributed by BJ, 25-Dec-2023.)
Assertion
Ref Expression
bj-idreseq ((𝐴𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))

Proof of Theorem bj-idreseq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-brresdm 37134 . . . 4 (𝐴( I ↾ 𝐶)𝐵𝐴𝐶)
2 relres 5976 . . . . 5 Rel ( I ↾ 𝐶)
32brrelex2i 5695 . . . 4 (𝐴( I ↾ 𝐶)𝐵𝐵 ∈ V)
41, 3jca 511 . . 3 (𝐴( I ↾ 𝐶)𝐵 → (𝐴𝐶𝐵 ∈ V))
54adantl 481 . 2 (((𝐴𝐵) ∈ 𝐶𝐴( I ↾ 𝐶)𝐵) → (𝐴𝐶𝐵 ∈ V))
6 eqimss 4005 . . . . . 6 (𝐴 = 𝐵𝐴𝐵)
7 dfss2 3932 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
86, 7sylib 218 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
98adantl 481 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) = 𝐴)
10 simpl 482 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) ∈ 𝐶)
119, 10eqeltrrd 2829 . . 3 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐴𝐶)
12 eqimss2 4006 . . . . . . 7 (𝐴 = 𝐵𝐵𝐴)
13 sseqin2 4186 . . . . . . 7 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
1412, 13sylib 218 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐵)
1514adantl 481 . . . . 5 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) = 𝐵)
1615, 10eqeltrrd 2829 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐵𝐶)
1716elexd 3471 . . 3 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐵 ∈ V)
1811, 17jca 511 . 2 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐶𝐵 ∈ V))
19 brres 5957 . . . 4 (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
2019adantl 481 . . 3 ((𝐴𝐶𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
21 eqeq12 2746 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
22 df-id 5533 . . . . 5 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
2321, 22brabga 5494 . . . 4 ((𝐴𝐶𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
2423anbi2d 630 . . 3 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 I 𝐵) ↔ (𝐴𝐶𝐴 = 𝐵)))
25 simp3 1138 . . . . 5 (((𝐴𝐶𝐵 ∈ V) ∧ 𝐴𝐶𝐴 = 𝐵) → 𝐴 = 𝐵)
26253expib 1122 . . . 4 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 = 𝐵) → 𝐴 = 𝐵))
27 3simpb 1149 . . . . 5 ((𝐴𝐶𝐵 ∈ V ∧ 𝐴 = 𝐵) → (𝐴𝐶𝐴 = 𝐵))
28273expia 1121 . . . 4 ((𝐴𝐶𝐵 ∈ V) → (𝐴 = 𝐵 → (𝐴𝐶𝐴 = 𝐵)))
2926, 28impbid 212 . . 3 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 = 𝐵) ↔ 𝐴 = 𝐵))
3020, 24, 293bitrd 305 . 2 ((𝐴𝐶𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))
315, 18, 30pm5.21nd 801 1 ((𝐴𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914   class class class wbr 5107   I cid 5532  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-res 5650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator