Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-idreseq Structured version   Visualization version   GIF version

Theorem bj-idreseq 36043
Description: Sufficient condition for the restricted identity relation to agree with equality. Note that the instance of bj-ideqg 36038 with V substituted for 𝑉 is a direct consequence of bj-idreseq 36043. This is a strengthening of resieq 5993 which should be proved from it (note that currently, resieq 5993 relies on ideq 5853). Note that the intersection in the antecedent is not very meaningful, but is a device to prove versions with either class assumed to be a set. It could be enough to prove the version with a disjunctive antecedent: ((𝐴𝐶𝐵𝐶) → ...). (Contributed by BJ, 25-Dec-2023.)
Assertion
Ref Expression
bj-idreseq ((𝐴𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))

Proof of Theorem bj-idreseq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-brresdm 36027 . . . 4 (𝐴( I ↾ 𝐶)𝐵𝐴𝐶)
2 relres 6011 . . . . 5 Rel ( I ↾ 𝐶)
32brrelex2i 5734 . . . 4 (𝐴( I ↾ 𝐶)𝐵𝐵 ∈ V)
41, 3jca 513 . . 3 (𝐴( I ↾ 𝐶)𝐵 → (𝐴𝐶𝐵 ∈ V))
54adantl 483 . 2 (((𝐴𝐵) ∈ 𝐶𝐴( I ↾ 𝐶)𝐵) → (𝐴𝐶𝐵 ∈ V))
6 eqimss 4041 . . . . . 6 (𝐴 = 𝐵𝐴𝐵)
7 df-ss 3966 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
86, 7sylib 217 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
98adantl 483 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) = 𝐴)
10 simpl 484 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) ∈ 𝐶)
119, 10eqeltrrd 2835 . . 3 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐴𝐶)
12 eqimss2 4042 . . . . . . 7 (𝐴 = 𝐵𝐵𝐴)
13 sseqin2 4216 . . . . . . 7 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
1412, 13sylib 217 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐵)
1514adantl 483 . . . . 5 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) = 𝐵)
1615, 10eqeltrrd 2835 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐵𝐶)
1716elexd 3495 . . 3 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐵 ∈ V)
1811, 17jca 513 . 2 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐶𝐵 ∈ V))
19 brres 5989 . . . 4 (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
2019adantl 483 . . 3 ((𝐴𝐶𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
21 eqeq12 2750 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
22 df-id 5575 . . . . 5 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
2321, 22brabga 5535 . . . 4 ((𝐴𝐶𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
2423anbi2d 630 . . 3 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 I 𝐵) ↔ (𝐴𝐶𝐴 = 𝐵)))
25 simp3 1139 . . . . 5 (((𝐴𝐶𝐵 ∈ V) ∧ 𝐴𝐶𝐴 = 𝐵) → 𝐴 = 𝐵)
26253expib 1123 . . . 4 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 = 𝐵) → 𝐴 = 𝐵))
27 3simpb 1150 . . . . 5 ((𝐴𝐶𝐵 ∈ V ∧ 𝐴 = 𝐵) → (𝐴𝐶𝐴 = 𝐵))
28273expia 1122 . . . 4 ((𝐴𝐶𝐵 ∈ V) → (𝐴 = 𝐵 → (𝐴𝐶𝐴 = 𝐵)))
2926, 28impbid 211 . . 3 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 = 𝐵) ↔ 𝐴 = 𝐵))
3020, 24, 293bitrd 305 . 2 ((𝐴𝐶𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))
315, 18, 30pm5.21nd 801 1 ((𝐴𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cin 3948  wss 3949   class class class wbr 5149   I cid 5574  cres 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-res 5689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator