Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-idreseq Structured version   Visualization version   GIF version

Theorem bj-idreseq 34577
Description: Sufficient condition for the restricted identity relation to agree with equality. Note that the instance of bj-ideqg 34572 with V substituted for 𝑉 is a direct consequence of bj-idreseq 34577. This is a strengthening of resieq 5829 which should be proved from it (note that currently, resieq 5829 relies on ideq 5687). Note that the intersection in the antecedent is not very meaningful, but is a device to prove versions with either class assumed to be a set. It could be enough to prove the version with a disjunctive antecedent: ((𝐴𝐶𝐵𝐶) → .... (Contributed by BJ, 25-Dec-2023.)
Assertion
Ref Expression
bj-idreseq ((𝐴𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))

Proof of Theorem bj-idreseq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-brresdm 34561 . . . 4 (𝐴( I ↾ 𝐶)𝐵𝐴𝐶)
2 relres 5847 . . . . 5 Rel ( I ↾ 𝐶)
32brrelex2i 5573 . . . 4 (𝐴( I ↾ 𝐶)𝐵𝐵 ∈ V)
41, 3jca 515 . . 3 (𝐴( I ↾ 𝐶)𝐵 → (𝐴𝐶𝐵 ∈ V))
54adantl 485 . 2 (((𝐴𝐵) ∈ 𝐶𝐴( I ↾ 𝐶)𝐵) → (𝐴𝐶𝐵 ∈ V))
6 eqimss 3971 . . . . . 6 (𝐴 = 𝐵𝐴𝐵)
7 df-ss 3898 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
86, 7sylib 221 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
98adantl 485 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) = 𝐴)
10 simpl 486 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) ∈ 𝐶)
119, 10eqeltrrd 2891 . . 3 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐴𝐶)
12 eqimss2 3972 . . . . . . 7 (𝐴 = 𝐵𝐵𝐴)
13 sseqin2 4142 . . . . . . 7 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
1412, 13sylib 221 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐵)
1514adantl 485 . . . . 5 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) = 𝐵)
1615, 10eqeltrrd 2891 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐵𝐶)
1716elexd 3461 . . 3 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐵 ∈ V)
1811, 17jca 515 . 2 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐶𝐵 ∈ V))
19 brres 5825 . . . 4 (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
2019adantl 485 . . 3 ((𝐴𝐶𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
21 eqeq12 2812 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
22 df-id 5425 . . . . 5 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
2321, 22brabga 5386 . . . 4 ((𝐴𝐶𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
2423anbi2d 631 . . 3 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 I 𝐵) ↔ (𝐴𝐶𝐴 = 𝐵)))
25 simp3 1135 . . . . 5 (((𝐴𝐶𝐵 ∈ V) ∧ 𝐴𝐶𝐴 = 𝐵) → 𝐴 = 𝐵)
26253expib 1119 . . . 4 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 = 𝐵) → 𝐴 = 𝐵))
27 3simpb 1146 . . . . 5 ((𝐴𝐶𝐵 ∈ V ∧ 𝐴 = 𝐵) → (𝐴𝐶𝐴 = 𝐵))
28273expia 1118 . . . 4 ((𝐴𝐶𝐵 ∈ V) → (𝐴 = 𝐵 → (𝐴𝐶𝐴 = 𝐵)))
2926, 28impbid 215 . . 3 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 = 𝐵) ↔ 𝐴 = 𝐵))
3020, 24, 293bitrd 308 . 2 ((𝐴𝐶𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))
315, 18, 30pm5.21nd 801 1 ((𝐴𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  wss 3881   class class class wbr 5030   I cid 5424  cres 5521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-res 5531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator