| Step | Hyp | Ref
| Expression |
| 1 | | bj-brresdm 37169 |
. . . 4
⊢ (𝐴( I ↾ 𝐶)𝐵 → 𝐴 ∈ 𝐶) |
| 2 | | relres 5997 |
. . . . 5
⊢ Rel ( I
↾ 𝐶) |
| 3 | 2 | brrelex2i 5716 |
. . . 4
⊢ (𝐴( I ↾ 𝐶)𝐵 → 𝐵 ∈ V) |
| 4 | 1, 3 | jca 511 |
. . 3
⊢ (𝐴( I ↾ 𝐶)𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V)) |
| 5 | 4 | adantl 481 |
. 2
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴( I ↾ 𝐶)𝐵) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V)) |
| 6 | | eqimss 4022 |
. . . . . 6
⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
| 7 | | dfss2 3949 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| 8 | 6, 7 | sylib 218 |
. . . . 5
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
| 9 | 8 | adantl 481 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) = 𝐴) |
| 10 | | simpl 482 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
| 11 | 9, 10 | eqeltrrd 2836 |
. . 3
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) |
| 12 | | eqimss2 4023 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) |
| 13 | | sseqin2 4203 |
. . . . . . 7
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) |
| 14 | 12, 13 | sylib 218 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐵) |
| 15 | 14 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) = 𝐵) |
| 16 | 15, 10 | eqeltrrd 2836 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝐶) |
| 17 | 16 | elexd 3488 |
. . 3
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐵 ∈ V) |
| 18 | 11, 17 | jca 511 |
. 2
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V)) |
| 19 | | brres 5978 |
. . . 4
⊢ (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵))) |
| 20 | 19 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵))) |
| 21 | | eqeq12 2753 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) |
| 22 | | df-id 5553 |
. . . . 5
⊢ I =
{〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
| 23 | 21, 22 | brabga 5514 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| 24 | 23 | anbi2d 630 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵) ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵))) |
| 25 | | simp3 1138 |
. . . . 5
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) |
| 26 | 25 | 3expib 1122 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)) |
| 27 | | 3simpb 1149 |
. . . . 5
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ∧ 𝐴 = 𝐵) → (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵)) |
| 28 | 27 | 3expia 1121 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵))) |
| 29 | 26, 28 | impbid 212 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵)) |
| 30 | 20, 24, 29 | 3bitrd 305 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ 𝐴 = 𝐵)) |
| 31 | 5, 18, 30 | pm5.21nd 801 |
1
⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵 ↔ 𝐴 = 𝐵)) |