Step | Hyp | Ref
| Expression |
1 | | bj-brresdm 35361 |
. . . 4
⊢ (𝐴( I ↾ 𝐶)𝐵 → 𝐴 ∈ 𝐶) |
2 | | relres 5932 |
. . . . 5
⊢ Rel ( I
↾ 𝐶) |
3 | 2 | brrelex2i 5655 |
. . . 4
⊢ (𝐴( I ↾ 𝐶)𝐵 → 𝐵 ∈ V) |
4 | 1, 3 | jca 513 |
. . 3
⊢ (𝐴( I ↾ 𝐶)𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V)) |
5 | 4 | adantl 483 |
. 2
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴( I ↾ 𝐶)𝐵) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V)) |
6 | | eqimss 3982 |
. . . . . 6
⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
7 | | df-ss 3909 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
8 | 6, 7 | sylib 217 |
. . . . 5
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
9 | 8 | adantl 483 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) = 𝐴) |
10 | | simpl 484 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
11 | 9, 10 | eqeltrrd 2838 |
. . 3
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) |
12 | | eqimss2 3983 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) |
13 | | sseqin2 4155 |
. . . . . . 7
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) |
14 | 12, 13 | sylib 217 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐵) |
15 | 14 | adantl 483 |
. . . . 5
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) = 𝐵) |
16 | 15, 10 | eqeltrrd 2838 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝐶) |
17 | 16 | elexd 3457 |
. . 3
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐵 ∈ V) |
18 | 11, 17 | jca 513 |
. 2
⊢ (((𝐴 ∩ 𝐵) ∈ 𝐶 ∧ 𝐴 = 𝐵) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V)) |
19 | | brres 5910 |
. . . 4
⊢ (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵))) |
20 | 19 | adantl 483 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵))) |
21 | | eqeq12 2753 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) |
22 | | df-id 5500 |
. . . . 5
⊢ I =
{〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
23 | 21, 22 | brabga 5460 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
24 | 23 | anbi2d 630 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐴 I 𝐵) ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵))) |
25 | | simp3 1138 |
. . . . 5
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) |
26 | 25 | 3expib 1122 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)) |
27 | | 3simpb 1149 |
. . . . 5
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ∧ 𝐴 = 𝐵) → (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵)) |
28 | 27 | 3expia 1121 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵))) |
29 | 26, 28 | impbid 211 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵)) |
30 | 20, 24, 29 | 3bitrd 305 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ 𝐴 = 𝐵)) |
31 | 5, 18, 30 | pm5.21nd 800 |
1
⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵 ↔ 𝐴 = 𝐵)) |