| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabresid | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| opabresid | ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-id 5553 | . . . 4 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 2 | equcom 2018 | . . . . 5 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 3 | 2 | opabbii 5191 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
| 4 | 1, 3 | eqtri 2759 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
| 5 | 4 | reseq1i 5967 | . 2 ⊢ ( I ↾ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) |
| 6 | resopab 6026 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 7 | 5, 6 | eqtri 2759 | 1 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5186 I cid 5552 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-res 5671 |
| This theorem is referenced by: mptresid 6043 iresn0n0 6046 pospo 18360 eqg0subg 19184 opsrtoslem1 22018 tgphaus 24060 relexp0eq 43692 |
| Copyright terms: Public domain | W3C validator |