MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabresid Structured version   Visualization version   GIF version

Theorem opabresid 5711
Description: The restricted identity expressed with the class builder. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
opabresid {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)} = ( I ↾ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem opabresid
StepHypRef Expression
1 resopab 5696 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
2 equcom 2065 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
32opabbii 4953 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
4 df-id 5261 . . . 4 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
53, 4eqtr4i 2805 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} = I
65reseq1i 5638 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} ↾ 𝐴) = ( I ↾ 𝐴)
71, 6eqtr3i 2804 1 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)} = ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1601  wcel 2107  {copab 4948   I cid 5260  cres 5357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-res 5367
This theorem is referenced by:  mptresid  5712  pospo  17359  opsrtoslem1  19880  tgphaus  22328  relexp0eq  38950
  Copyright terms: Public domain W3C validator