MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabresid Structured version   Visualization version   GIF version

Theorem opabresid 5957
Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
opabresid ( I ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem opabresid
StepHypRef Expression
1 df-id 5489 . . . 4 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
2 equcom 2021 . . . . 5 (𝑥 = 𝑦𝑦 = 𝑥)
32opabbii 5141 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥}
41, 3eqtri 2766 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥}
54reseq1i 5887 . 2 ( I ↾ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} ↾ 𝐴)
6 resopab 5942 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
75, 6eqtri 2766 1 ( I ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  {copab 5136   I cid 5488  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by:  mptresid  5958  iresn0n0  5963  pospo  18063  opsrtoslem1  21262  tgphaus  23268  relexp0eq  41309
  Copyright terms: Public domain W3C validator