MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabresid Structured version   Visualization version   GIF version

Theorem opabresid 6010
Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
opabresid ( I ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem opabresid
StepHypRef Expression
1 df-id 5526 . . . 4 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
2 equcom 2018 . . . . 5 (𝑥 = 𝑦𝑦 = 𝑥)
32opabbii 5169 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥}
41, 3eqtri 2752 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥}
54reseq1i 5935 . 2 ( I ↾ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} ↾ 𝐴)
6 resopab 5994 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
75, 6eqtri 2752 1 ( I ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {copab 5164   I cid 5525  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-res 5643
This theorem is referenced by:  mptresid  6011  iresn0n0  6014  pospo  18280  eqg0subg  19104  opsrtoslem1  21938  tgphaus  23980  relexp0eq  43663
  Copyright terms: Public domain W3C validator