MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun2OLDOLD Structured version   Visualization version   GIF version

Theorem dffun2OLDOLD 6523
Description: Obsolete version of dffun2 6521 as of 11-Dec-2024. (Contributed by NM, 29-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dffun2OLDOLD (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dffun2OLDOLD
StepHypRef Expression
1 df-fun 6513 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
2 df-id 5533 . . . . . 6 I = {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧}
32sseq2i 3976 . . . . 5 ((𝐴𝐴) ⊆ I ↔ (𝐴𝐴) ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧})
4 df-co 5647 . . . . . 6 (𝐴𝐴) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)}
54sseq1i 3975 . . . . 5 ((𝐴𝐴) ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} ↔ {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)} ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧})
6 ssopab2bw 5507 . . . . 5 ({⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)} ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} ↔ ∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧))
73, 5, 63bitri 297 . . . 4 ((𝐴𝐴) ⊆ I ↔ ∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧))
8 vex 3451 . . . . . . . . . . . 12 𝑦 ∈ V
9 vex 3451 . . . . . . . . . . . 12 𝑥 ∈ V
108, 9brcnv 5846 . . . . . . . . . . 11 (𝑦𝐴𝑥𝑥𝐴𝑦)
1110anbi1i 624 . . . . . . . . . 10 ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦𝑥𝐴𝑧))
1211exbii 1848 . . . . . . . . 9 (∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) ↔ ∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧))
1312imbi1i 349 . . . . . . . 8 ((∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
14 19.23v 1942 . . . . . . . 8 (∀𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1513, 14bitr4i 278 . . . . . . 7 ((∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1615albii 1819 . . . . . 6 (∀𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
17 alcom 2160 . . . . . 6 (∀𝑧𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1816, 17bitri 275 . . . . 5 (∀𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1918albii 1819 . . . 4 (∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
20 alcom 2160 . . . 4 (∀𝑦𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
217, 19, 203bitri 297 . . 3 ((𝐴𝐴) ⊆ I ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2221anbi2i 623 . 2 ((Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
231, 22bitri 275 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wss 3914   class class class wbr 5107  {copab 5169   I cid 5532  ccnv 5637  ccom 5642  Rel wrel 5643  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-cnv 5646  df-co 5647  df-fun 6513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator