Proof of Theorem dffun2OLDOLD
Step | Hyp | Ref
| Expression |
1 | | df-fun 6460 |
. 2
⊢ (Fun
𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
2 | | df-id 5500 |
. . . . . 6
⊢ I =
{〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} |
3 | 2 | sseq2i 3955 |
. . . . 5
⊢ ((𝐴 ∘ ◡𝐴) ⊆ I ↔ (𝐴 ∘ ◡𝐴) ⊆ {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧}) |
4 | | df-co 5609 |
. . . . . 6
⊢ (𝐴 ∘ ◡𝐴) = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧)} |
5 | 4 | sseq1i 3954 |
. . . . 5
⊢ ((𝐴 ∘ ◡𝐴) ⊆ {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} ↔ {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧)} ⊆ {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧}) |
6 | | ssopab2bw 5473 |
. . . . 5
⊢
({〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧)} ⊆ {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} ↔ ∀𝑦∀𝑧(∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
7 | 3, 5, 6 | 3bitri 297 |
. . . 4
⊢ ((𝐴 ∘ ◡𝐴) ⊆ I ↔ ∀𝑦∀𝑧(∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
8 | | vex 3441 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
9 | | vex 3441 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
10 | 8, 9 | brcnv 5804 |
. . . . . . . . . . 11
⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
11 | 10 | anbi1i 625 |
. . . . . . . . . 10
⊢ ((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)) |
12 | 11 | exbii 1848 |
. . . . . . . . 9
⊢
(∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) ↔ ∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)) |
13 | 12 | imbi1i 350 |
. . . . . . . 8
⊢
((∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
14 | | 19.23v 1943 |
. . . . . . . 8
⊢
(∀𝑥((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
15 | 13, 14 | bitr4i 278 |
. . . . . . 7
⊢
((∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
16 | 15 | albii 1819 |
. . . . . 6
⊢
(∀𝑧(∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧∀𝑥((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
17 | | alcom 2154 |
. . . . . 6
⊢
(∀𝑧∀𝑥((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
18 | 16, 17 | bitri 275 |
. . . . 5
⊢
(∀𝑧(∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
19 | 18 | albii 1819 |
. . . 4
⊢
(∀𝑦∀𝑧(∃𝑥(𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦∀𝑥∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
20 | | alcom 2154 |
. . . 4
⊢
(∀𝑦∀𝑥∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
21 | 7, 19, 20 | 3bitri 297 |
. . 3
⊢ ((𝐴 ∘ ◡𝐴) ⊆ I ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
22 | 21 | anbi2i 624 |
. 2
⊢ ((Rel
𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
23 | 1, 22 | bitri 275 |
1
⊢ (Fun
𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |