Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelidb Structured version   Visualization version   GIF version

Theorem bj-opelidb 36337
Description: Characterization of the ordered pair elements of the identity relation.

Remark: in deduction-style proofs, one could save a few syntactic steps by using another antecedent than which already appears in the proof. Here for instance this could be the definition I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} but this would make the proof less easy to read. (Contributed by BJ, 27-Dec-2023.)

Assertion
Ref Expression
bj-opelidb (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))

Proof of Theorem bj-opelidb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 5574 . . . 4 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
21a1i 11 . . 3 (⊤ → I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦})
3 eqeq12 2748 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
43adantl 481 . . 3 ((⊤ ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑥 = 𝑦𝐴 = 𝐵))
52, 4opelopabbv 36328 . 2 (⊤ → (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)))
65mptru 1547 1 (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wtru 1541  wcel 2105  Vcvv 3473  cop 4634  {copab 5210   I cid 5573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-opab 5211  df-id 5574
This theorem is referenced by:  bj-opelidb1  36338  bj-opelid  36341
  Copyright terms: Public domain W3C validator