Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelidb | Structured version Visualization version GIF version |
Description: Characterization of the
ordered pair elements of the identity relation.
Remark: in deduction-style proofs, one could save a few syntactic steps by using another antecedent than ⊤ which already appears in the proof. Here for instance this could be the definition I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} but this would make the proof less easy to read. (Contributed by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
bj-opelidb | ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5489 | . . . 4 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) |
3 | eqeq12 2755 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
4 | 3 | adantl 482 | . . 3 ⊢ ((⊤ ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) |
5 | 2, 4 | opelopabbv 35314 | . 2 ⊢ (⊤ → (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))) |
6 | 5 | mptru 1546 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 Vcvv 3432 〈cop 4567 {copab 5136 I cid 5488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-id 5489 |
This theorem is referenced by: bj-opelidb1 35324 bj-opelid 35327 |
Copyright terms: Public domain | W3C validator |