| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelidb | Structured version Visualization version GIF version | ||
| Description: Characterization of the
ordered pair elements of the identity relation.
Remark: in deduction-style proofs, one could save a few syntactic steps by using another antecedent than ⊤ which already appears in the proof. Here for instance this could be the definition I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} but this would make the proof less easy to read. (Contributed by BJ, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-opelidb | ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-id 5560 | . . . 4 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) |
| 3 | eqeq12 2751 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) |
| 5 | 2, 4 | opelopabbv 37085 | . 2 ⊢ (⊤ → (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))) |
| 6 | 5 | mptru 1546 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 Vcvv 3464 〈cop 4614 {copab 5187 I cid 5559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-opab 5188 df-id 5560 |
| This theorem is referenced by: bj-opelidb1 37095 bj-opelid 37098 |
| Copyright terms: Public domain | W3C validator |