Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelidb Structured version   Visualization version   GIF version

Theorem bj-opelidb 37118
Description: Characterization of the ordered pair elements of the identity relation.

Remark: in deduction-style proofs, one could save a few syntactic steps by using another antecedent than which already appears in the proof. Here for instance this could be the definition I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} but this would make the proof less easy to read. (Contributed by BJ, 27-Dec-2023.)

Assertion
Ref Expression
bj-opelidb (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))

Proof of Theorem bj-opelidb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 5593 . . . 4 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
21a1i 11 . . 3 (⊤ → I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦})
3 eqeq12 2757 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
43adantl 481 . . 3 ((⊤ ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑥 = 𝑦𝐴 = 𝐵))
52, 4opelopabbv 37109 . 2 (⊤ → (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)))
65mptru 1544 1 (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  Vcvv 3488  cop 4654  {copab 5228   I cid 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-id 5593
This theorem is referenced by:  bj-opelidb1  37119  bj-opelid  37122
  Copyright terms: Public domain W3C validator