![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelidb | Structured version Visualization version GIF version |
Description: Characterization of the
ordered pair elements of the identity relation.
Remark: in deduction-style proofs, one could save a few syntactic steps by using another antecedent than ⊤ which already appears in the proof. Here for instance this could be the definition I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} but this would make the proof less easy to read. (Contributed by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
bj-opelidb | ⊢ (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5574 | . . . 4 ⊢ I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}) |
3 | eqeq12 2748 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) |
5 | 2, 4 | opelopabbv 36328 | . 2 ⊢ (⊤ → (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))) |
6 | 5 | mptru 1547 | 1 ⊢ (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 Vcvv 3473 ⟨cop 4634 {copab 5210 I cid 5573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-id 5574 |
This theorem is referenced by: bj-opelidb1 36338 bj-opelid 36341 |
Copyright terms: Public domain | W3C validator |