| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ideqg1 | Structured version Visualization version GIF version | ||
| Description: For sets, the identity
relation is the same thing as equality.
(Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon,
27-Aug-2011.) Generalize to a disjunctive antecedent. (Revised by BJ,
24-Dec-2023.)
TODO: delete once bj-ideqg 37208 is in the main section. |
| Ref | Expression |
|---|---|
| bj-ideqg1 | ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq12 2748 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 2 | df-id 5514 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 3 | 1, 2 | bj-brab2a1 37200 | . 2 ⊢ (𝐴 I 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
| 4 | simpr 484 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 5 | elex 3457 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 6 | 5 | a1d 25 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
| 7 | elex 3457 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 8 | eleq1a 2826 | . . . . . . 7 ⊢ (𝐵 ∈ V → (𝐴 = 𝐵 → 𝐴 ∈ V)) | |
| 9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
| 10 | 6, 9 | jaoi 857 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
| 11 | eleq1 2819 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
| 12 | 5, 11 | syl5ibcom 245 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
| 13 | 7 | a1d 25 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
| 14 | 12, 13 | jaoi 857 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
| 15 | 10, 14 | jcad 512 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 16 | 15 | ancrd 551 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))) |
| 17 | 4, 16 | impbid2 226 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵)) |
| 18 | 3, 17 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5093 I cid 5513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |