Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ideqg1 | Structured version Visualization version GIF version |
Description: For sets, the identity
relation is the same thing as equality.
(Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon,
27-Aug-2011.) Generalize to a disjunctive antecedent. (Revised by BJ,
24-Dec-2023.)
TODO: delete once bj-ideqg 35328 is in the main section. |
Ref | Expression |
---|---|
bj-ideqg1 | ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12 2755 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
2 | df-id 5489 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | bj-brab2a1 35320 | . 2 ⊢ (𝐴 I 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
4 | simpr 485 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
5 | elex 3450 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
6 | 5 | a1d 25 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
7 | elex 3450 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
8 | eleq1a 2834 | . . . . . . 7 ⊢ (𝐵 ∈ V → (𝐴 = 𝐵 → 𝐴 ∈ V)) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
10 | 6, 9 | jaoi 854 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
11 | eleq1 2826 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
12 | 5, 11 | syl5ibcom 244 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
13 | 7 | a1d 25 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
14 | 12, 13 | jaoi 854 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
15 | 10, 14 | jcad 513 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
16 | 15 | ancrd 552 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))) |
17 | 4, 16 | impbid2 225 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵)) |
18 | 3, 17 | syl5bb 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 I cid 5488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |