Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqg1 Structured version   Visualization version   GIF version

Theorem bj-ideqg1 35314
Description: For sets, the identity relation is the same thing as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalize to a disjunctive antecedent. (Revised by BJ, 24-Dec-2023.)

TODO: delete once bj-ideqg 35307 is in the main section.

Assertion
Ref Expression
bj-ideqg1 ((𝐴𝑉𝐵𝑊) → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem bj-ideqg1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq12 2756 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
2 df-id 5488 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
31, 2bj-brab2a1 35299 . 2 (𝐴 I 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
4 simpr 484 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
5 elex 3448 . . . . . . 7 (𝐴𝑉𝐴 ∈ V)
65a1d 25 . . . . . 6 (𝐴𝑉 → (𝐴 = 𝐵𝐴 ∈ V))
7 elex 3448 . . . . . . 7 (𝐵𝑊𝐵 ∈ V)
8 eleq1a 2835 . . . . . . 7 (𝐵 ∈ V → (𝐴 = 𝐵𝐴 ∈ V))
97, 8syl 17 . . . . . 6 (𝐵𝑊 → (𝐴 = 𝐵𝐴 ∈ V))
106, 9jaoi 853 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵𝐴 ∈ V))
11 eleq1 2827 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
125, 11syl5ibcom 244 . . . . . 6 (𝐴𝑉 → (𝐴 = 𝐵𝐵 ∈ V))
137a1d 25 . . . . . 6 (𝐵𝑊 → (𝐴 = 𝐵𝐵 ∈ V))
1412, 13jaoi 853 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵𝐵 ∈ V))
1510, 14jcad 512 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
1615ancrd 551 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)))
174, 16impbid2 225 . 2 ((𝐴𝑉𝐵𝑊) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵))
183, 17syl5bb 282 1 ((𝐴𝑉𝐵𝑊) → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1541  wcel 2109  Vcvv 3430   class class class wbr 5078   I cid 5487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator