![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ideqg1 | Structured version Visualization version GIF version |
Description: For sets, the identity
relation is the same thing as equality.
(Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon,
27-Aug-2011.) Generalize to a disjunctive antecedent. (Revised by BJ,
24-Dec-2023.)
TODO: delete once bj-ideqg 36693 is in the main section. |
Ref | Expression |
---|---|
bj-ideqg1 | ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12 2742 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
2 | df-id 5570 | . . 3 ⊢ I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | bj-brab2a1 36685 | . 2 ⊢ (𝐴 I 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
4 | simpr 483 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
5 | elex 3482 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
6 | 5 | a1d 25 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
7 | elex 3482 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
8 | eleq1a 2820 | . . . . . . 7 ⊢ (𝐵 ∈ V → (𝐴 = 𝐵 → 𝐴 ∈ V)) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
10 | 6, 9 | jaoi 855 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
11 | eleq1 2813 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
12 | 5, 11 | syl5ibcom 244 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
13 | 7 | a1d 25 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
14 | 12, 13 | jaoi 855 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
15 | 10, 14 | jcad 511 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
16 | 15 | ancrd 550 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))) |
17 | 4, 16 | impbid2 225 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵)) |
18 | 3, 17 | bitrid 282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 Vcvv 3463 class class class wbr 5143 I cid 5569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |