Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ideqg1 | Structured version Visualization version GIF version |
Description: For sets, the identity
relation is the same thing as equality.
(Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon,
27-Aug-2011.) Generalize to a disjunctive antecedent. (Revised by BJ,
24-Dec-2023.)
TODO: delete once bj-ideqg 35307 is in the main section. |
Ref | Expression |
---|---|
bj-ideqg1 | ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12 2756 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
2 | df-id 5488 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | bj-brab2a1 35299 | . 2 ⊢ (𝐴 I 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
4 | simpr 484 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
5 | elex 3448 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
6 | 5 | a1d 25 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
7 | elex 3448 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
8 | eleq1a 2835 | . . . . . . 7 ⊢ (𝐵 ∈ V → (𝐴 = 𝐵 → 𝐴 ∈ V)) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
10 | 6, 9 | jaoi 853 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
11 | eleq1 2827 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
12 | 5, 11 | syl5ibcom 244 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
13 | 7 | a1d 25 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
14 | 12, 13 | jaoi 853 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → 𝐵 ∈ V)) |
15 | 10, 14 | jcad 512 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
16 | 15 | ancrd 551 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))) |
17 | 4, 16 | impbid2 225 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵)) |
18 | 3, 17 | syl5bb 282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 I cid 5487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |