Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqg1 Structured version   Visualization version   GIF version

Theorem bj-ideqg1 35262
Description: For sets, the identity relation is the same thing as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalize to a disjunctive antecedent. (Revised by BJ, 24-Dec-2023.)

TODO: delete once bj-ideqg 35255 is in the main section.

Assertion
Ref Expression
bj-ideqg1 ((𝐴𝑉𝐵𝑊) → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem bj-ideqg1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq12 2755 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
2 df-id 5480 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
31, 2bj-brab2a1 35247 . 2 (𝐴 I 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
4 simpr 484 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
5 elex 3440 . . . . . . 7 (𝐴𝑉𝐴 ∈ V)
65a1d 25 . . . . . 6 (𝐴𝑉 → (𝐴 = 𝐵𝐴 ∈ V))
7 elex 3440 . . . . . . 7 (𝐵𝑊𝐵 ∈ V)
8 eleq1a 2834 . . . . . . 7 (𝐵 ∈ V → (𝐴 = 𝐵𝐴 ∈ V))
97, 8syl 17 . . . . . 6 (𝐵𝑊 → (𝐴 = 𝐵𝐴 ∈ V))
106, 9jaoi 853 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵𝐴 ∈ V))
11 eleq1 2826 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
125, 11syl5ibcom 244 . . . . . 6 (𝐴𝑉 → (𝐴 = 𝐵𝐵 ∈ V))
137a1d 25 . . . . . 6 (𝐵𝑊 → (𝐴 = 𝐵𝐵 ∈ V))
1412, 13jaoi 853 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵𝐵 ∈ V))
1510, 14jcad 512 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
1615ancrd 551 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)))
174, 16impbid2 225 . 2 ((𝐴𝑉𝐵𝑊) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵))
183, 17syl5bb 282 1 ((𝐴𝑉𝐵𝑊) → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070   I cid 5479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator