| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iineq12f | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
| Ref | Expression |
|---|---|
| iineq12f.1 | ⊢ Ⅎ𝑥𝐴 |
| iineq12f.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| iineq12f | ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2824 | . . . . . 6 ⊢ (𝐶 = 𝐷 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) | |
| 2 | 1 | ralimi 3074 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 3 | ralbi 3093 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷)) |
| 5 | iineq12f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 6 | iineq12f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 5, 6 | raleqf 3339 | . . . 4 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
| 8 | 4, 7 | sylan9bbr 510 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
| 9 | 8 | abbidv 2802 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷}) |
| 10 | df-iin 4975 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
| 11 | df-iin 4975 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐷 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷} | |
| 12 | 9, 10, 11 | 3eqtr4g 2796 | 1 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 Ⅎwnfc 2884 ∀wral 3052 ∩ ciin 4973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-iin 4975 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |