|   | Mathbox for Giovanni Mascellani | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iineq12f | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| iineq12f.1 | ⊢ Ⅎ𝑥𝐴 | 
| iineq12f.2 | ⊢ Ⅎ𝑥𝐵 | 
| Ref | Expression | 
|---|---|
| iineq12f | ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq2 2830 | . . . . . 6 ⊢ (𝐶 = 𝐷 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) | |
| 2 | 1 | ralimi 3083 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) | 
| 3 | ralbi 3103 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷)) | 
| 5 | iineq12f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 6 | iineq12f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 5, 6 | raleqf 3353 | . . . 4 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) | 
| 8 | 4, 7 | sylan9bbr 510 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) | 
| 9 | 8 | abbidv 2808 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷}) | 
| 10 | df-iin 4994 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
| 11 | df-iin 4994 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐷 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷} | |
| 12 | 9, 10, 11 | 3eqtr4g 2802 | 1 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 Ⅎwnfc 2890 ∀wral 3061 ∩ ciin 4992 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-iin 4994 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |