Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineq12f Structured version   Visualization version   GIF version

Theorem iineq12f 36249
Description: Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Hypotheses
Ref Expression
iineq12f.1 𝑥𝐴
iineq12f.2 𝑥𝐵
Assertion
Ref Expression
iineq12f ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)

Proof of Theorem iineq12f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2827 . . . . . 6 (𝐶 = 𝐷 → (𝑦𝐶𝑦𝐷))
21ralimi 3086 . . . . 5 (∀𝑥𝐴 𝐶 = 𝐷 → ∀𝑥𝐴 (𝑦𝐶𝑦𝐷))
3 ralbi 3092 . . . . 5 (∀𝑥𝐴 (𝑦𝐶𝑦𝐷) → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐴 𝑦𝐷))
42, 3syl 17 . . . 4 (∀𝑥𝐴 𝐶 = 𝐷 → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐴 𝑦𝐷))
5 iineq12f.1 . . . . 5 𝑥𝐴
6 iineq12f.2 . . . . 5 𝑥𝐵
75, 6raleqf 3323 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴 𝑦𝐷 ↔ ∀𝑥𝐵 𝑦𝐷))
84, 7sylan9bbr 510 . . 3 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐵 𝑦𝐷))
98abbidv 2808 . 2 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐷})
10 df-iin 4924 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶}
11 df-iin 4924 . 2 𝑥𝐵 𝐷 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐷}
129, 10, 113eqtr4g 2804 1 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wnfc 2886  wral 3063   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-iin 4924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator