Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iineq12f | Structured version Visualization version GIF version |
Description: Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
Ref | Expression |
---|---|
iineq12f.1 | ⊢ Ⅎ𝑥𝐴 |
iineq12f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
iineq12f | ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . . . 6 ⊢ (𝐶 = 𝐷 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) | |
2 | 1 | ralimi 3087 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
3 | ralbi 3089 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷)) |
5 | iineq12f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
6 | iineq12f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | raleqf 3332 | . . . 4 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
8 | 4, 7 | sylan9bbr 511 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
9 | 8 | abbidv 2807 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷}) |
10 | df-iin 4927 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
11 | df-iin 4927 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐷 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷} | |
12 | 9, 10, 11 | 3eqtr4g 2803 | 1 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 ∀wral 3064 ∩ ciin 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-iin 4927 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |