Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineq12f Structured version   Visualization version   GIF version

Theorem iineq12f 38212
Description: Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Hypotheses
Ref Expression
iineq12f.1 𝑥𝐴
iineq12f.2 𝑥𝐵
Assertion
Ref Expression
iineq12f ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)

Proof of Theorem iineq12f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2820 . . . . . 6 (𝐶 = 𝐷 → (𝑦𝐶𝑦𝐷))
21ralimi 3069 . . . . 5 (∀𝑥𝐴 𝐶 = 𝐷 → ∀𝑥𝐴 (𝑦𝐶𝑦𝐷))
3 ralbi 3087 . . . . 5 (∀𝑥𝐴 (𝑦𝐶𝑦𝐷) → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐴 𝑦𝐷))
42, 3syl 17 . . . 4 (∀𝑥𝐴 𝐶 = 𝐷 → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐴 𝑦𝐷))
5 iineq12f.1 . . . . 5 𝑥𝐴
6 iineq12f.2 . . . . 5 𝑥𝐵
75, 6raleqf 3321 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴 𝑦𝐷 ↔ ∀𝑥𝐵 𝑦𝐷))
84, 7sylan9bbr 510 . . 3 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐵 𝑦𝐷))
98abbidv 2797 . 2 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐷})
10 df-iin 4942 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶}
11 df-iin 4942 . 2 𝑥𝐵 𝐷 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐷}
129, 10, 113eqtr4g 2791 1 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wnfc 2879  wral 3047   ciin 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-iin 4942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator