MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2 Structured version   Visualization version   GIF version

Theorem iineq2 4944
Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iineq2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)

Proof of Theorem iineq2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2827 . . . . 5 (𝐵 = 𝐶 → (𝑦𝐵𝑦𝐶))
21ralimi 3087 . . . 4 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
3 ralbi 3089 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑦𝐶))
42, 3syl 17 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑦𝐶))
54abbidv 2807 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵} = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶})
6 df-iin 4927 . 2 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
7 df-iin 4927 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶}
85, 6, 73eqtr4g 2803 1 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  {cab 2715  wral 3064   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-iin 4927
This theorem is referenced by:  iineq2i  4946  iineq2d  4947  firest  17143  iincld  22190  elrfirn2  40518
  Copyright terms: Public domain W3C validator