Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iineq2 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iineq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) | |
2 | 1 | ralimi 3087 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
3 | ralbi 3089 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
5 | 4 | abbidv 2807 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶}) |
6 | df-iin 4927 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
7 | df-iin 4927 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
8 | 5, 6, 7 | 3eqtr4g 2803 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∩ ciin 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-iin 4927 |
This theorem is referenced by: iineq2i 4946 iineq2d 4947 firest 17143 iincld 22190 elrfirn2 40518 |
Copyright terms: Public domain | W3C validator |