MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq1 Structured version   Visualization version   GIF version

Theorem iineq1 4928
Description: Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iineq1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iineq1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 raleq 3405 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐵 𝑦𝐶))
21abbidv 2885 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐶})
3 df-iin 4914 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶}
4 df-iin 4914 . 2 𝑥𝐵 𝐶 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐶}
52, 3, 43eqtr4g 2881 1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  {cab 2799  wral 3138   ciin 4912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1777  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-ral 3143  df-iin 4914
This theorem is referenced by:  iinrab2  4984  iinvdif  4994  riin0  4996  iin0  5253  xpriindi  5701  cmpfi  22010  ptbasfi  22183  fclsval  22610  taylfval  24941  polvalN  37035  iineq1d  41349
  Copyright terms: Public domain W3C validator