MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq1 Structured version   Visualization version   GIF version

Theorem iineq1 4957
Description: Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iineq1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iineq1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 raleq 3289 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐵 𝑦𝐶))
21abbidv 2797 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐶})
3 df-iin 4942 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶}
4 df-iin 4942 . 2 𝑥𝐵 𝐶 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐶}
52, 3, 43eqtr4g 2791 1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {cab 2709  wral 3047   ciin 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-ral 3048  df-rex 3057  df-iin 4942
This theorem is referenced by:  iinrab2  5016  iinvdif  5026  riin0  5028  iin0  5298  xpriindi  5775  cmpfi  23323  ptbasfi  23496  fclsval  23923  taylfval  26293  polvalN  40014  iineq1d  45197
  Copyright terms: Public domain W3C validator