![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iineq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iineq1 | ⊢ (𝐴 = 𝐵 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3321 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
2 | 1 | abbidv 2800 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶}) |
3 | df-iin 5000 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
4 | df-iin 5000 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {cab 2708 ∀wral 3060 ∩ ciin 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-ral 3061 df-rex 3070 df-iin 5000 |
This theorem is referenced by: iinrab2 5073 iinvdif 5083 riin0 5085 iin0 5360 xpriindi 5836 cmpfi 23232 ptbasfi 23405 fclsval 23832 taylfval 26210 polvalN 39240 iineq1d 44241 |
Copyright terms: Public domain | W3C validator |