| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wofi | Structured version Visualization version GIF version | ||
| Description: A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| Ref | Expression |
|---|---|
| wofi | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo 5568 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 2 | frfi 9239 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 Fr 𝐴) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 Fr 𝐴) |
| 4 | simpl 482 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 Or 𝐴) | |
| 5 | df-we 5596 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 6 | 3, 4, 5 | sylanbrc 583 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Po wpo 5547 Or wor 5548 Fr wfr 5591 We wwe 5593 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-en 8922 df-fin 8925 |
| This theorem is referenced by: wofib 9505 wemapso2lem 9512 finnisoeu 10073 cflim2 10223 fz1isolem 14433 finorwe 37377 |
| Copyright terms: Public domain | W3C validator |