MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wofi Structured version   Visualization version   GIF version

Theorem wofi 9289
Description: A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
wofi ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)

Proof of Theorem wofi
StepHypRef Expression
1 sopo 5598 . . 3 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 frfi 9285 . . 3 ((𝑅 Po 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
31, 2sylan 579 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
4 simpl 482 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 Or 𝐴)
5 df-we 5624 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
63, 4, 5sylanbrc 582 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098   Po wpo 5577   Or wor 5578   Fr wfr 5619   We wwe 5621  Fincfn 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-om 7850  df-en 8937  df-fin 8940
This theorem is referenced by:  wofib  9537  wemapso2lem  9544  finnisoeu  10105  cflim2  10255  fz1isolem  14420  finorwe  36754
  Copyright terms: Public domain W3C validator