MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isowe Structured version   Visualization version   GIF version

Theorem isowe 7352
Description: An isomorphism preserves the property of being a well-ordering. Proposition 6.32(3) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isowe (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴𝑆 We 𝐵))

Proof of Theorem isowe
StepHypRef Expression
1 isofr 7345 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
2 isoso 7351 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Or 𝐴𝑆 Or 𝐵))
31, 2anbi12d 631 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐵𝑆 Or 𝐵)))
4 df-we 5630 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5630 . 2 (𝑆 We 𝐵 ↔ (𝑆 Fr 𝐵𝑆 Or 𝐵))
63, 4, 53bitr4g 314 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴𝑆 We 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   Or wor 5584   Fr wfr 5625   We wwe 5627   Isom wiso 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-id 5571  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552
This theorem is referenced by:  f1owe  7356  hartogslem1  9560  oemapwe  9712  om2uzoi  13947  om2noseqoi  28170
  Copyright terms: Public domain W3C validator