MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isowe Structured version   Visualization version   GIF version

Theorem isowe 7339
Description: An isomorphism preserves the property of being a well-ordering. Proposition 6.32(3) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isowe (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴𝑆 We 𝐵))

Proof of Theorem isowe
StepHypRef Expression
1 isofr 7332 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
2 isoso 7338 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Or 𝐴𝑆 Or 𝐵))
31, 2anbi12d 630 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐵𝑆 Or 𝐵)))
4 df-we 5624 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5624 . 2 (𝑆 We 𝐵 ↔ (𝑆 Fr 𝐵𝑆 Or 𝐵))
63, 4, 53bitr4g 314 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴𝑆 We 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   Or wor 5578   Fr wfr 5619   We wwe 5621   Isom wiso 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543
This theorem is referenced by:  f1owe  7343  hartogslem1  9534  oemapwe  9686  om2uzoi  13921  om2noseqoi  28116
  Copyright terms: Public domain W3C validator