![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isowe2 | Structured version Visualization version GIF version |
Description: A weak form of isowe 7342 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
isowe2 | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | imaeq2 6053 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐻 “ 𝑥) = (𝐻 “ 𝑦)) | |
3 | 2 | eleq1d 2818 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐻 “ 𝑥) ∈ V ↔ (𝐻 “ 𝑦) ∈ V)) |
4 | 3 | spvv 2000 | . . . . 5 ⊢ (∀𝑥(𝐻 “ 𝑥) ∈ V → (𝐻 “ 𝑦) ∈ V) |
5 | 4 | adantl 482 | . . . 4 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝐻 “ 𝑦) ∈ V) |
6 | 1, 5 | isofrlem 7333 | . . 3 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
7 | isosolem 7340 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) | |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) |
9 | 6, 8 | anim12d 609 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → ((𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
10 | df-we 5632 | . 2 ⊢ (𝑆 We 𝐵 ↔ (𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵)) | |
11 | df-we 5632 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
12 | 9, 10, 11 | 3imtr4g 295 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1539 ∈ wcel 2106 Vcvv 3474 Or wor 5586 Fr wfr 5627 We wwe 5629 “ cima 5678 Isom wiso 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 |
This theorem is referenced by: fnwelem 8113 ltweuz 13922 |
Copyright terms: Public domain | W3C validator |