Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isowe2 | Structured version Visualization version GIF version |
Description: A weak form of isowe 7220 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
isowe2 | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | imaeq2 5965 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐻 “ 𝑥) = (𝐻 “ 𝑦)) | |
3 | 2 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐻 “ 𝑥) ∈ V ↔ (𝐻 “ 𝑦) ∈ V)) |
4 | 3 | spvv 2000 | . . . . 5 ⊢ (∀𝑥(𝐻 “ 𝑥) ∈ V → (𝐻 “ 𝑦) ∈ V) |
5 | 4 | adantl 482 | . . . 4 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝐻 “ 𝑦) ∈ V) |
6 | 1, 5 | isofrlem 7211 | . . 3 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
7 | isosolem 7218 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) | |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) |
9 | 6, 8 | anim12d 609 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → ((𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
10 | df-we 5546 | . 2 ⊢ (𝑆 We 𝐵 ↔ (𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵)) | |
11 | df-we 5546 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
12 | 9, 10, 11 | 3imtr4g 296 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 Vcvv 3432 Or wor 5502 Fr wfr 5541 We wwe 5543 “ cima 5592 Isom wiso 6434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 |
This theorem is referenced by: fnwelem 7972 ltweuz 13681 |
Copyright terms: Public domain | W3C validator |