MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isowe2 Structured version   Visualization version   GIF version

Theorem isowe2 7290
Description: A weak form of isowe 7289 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isowe2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝑆 We 𝐵𝑅 We 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆   𝑥,𝐻

Proof of Theorem isowe2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 imaeq2 6009 . . . . . . 7 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
32eleq1d 2818 . . . . . 6 (𝑥 = 𝑦 → ((𝐻𝑥) ∈ V ↔ (𝐻𝑦) ∈ V))
43spvv 1989 . . . . 5 (∀𝑥(𝐻𝑥) ∈ V → (𝐻𝑦) ∈ V)
54adantl 481 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝐻𝑦) ∈ V)
61, 5isofrlem 7280 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
7 isosolem 7287 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))
87adantr 480 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝑆 Or 𝐵𝑅 Or 𝐴))
96, 8anim12d 609 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → ((𝑆 Fr 𝐵𝑆 Or 𝐵) → (𝑅 Fr 𝐴𝑅 Or 𝐴)))
10 df-we 5574 . 2 (𝑆 We 𝐵 ↔ (𝑆 Fr 𝐵𝑆 Or 𝐵))
11 df-we 5574 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
129, 10, 113imtr4g 296 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝑆 We 𝐵𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wcel 2113  Vcvv 3437   Or wor 5526   Fr wfr 5569   We wwe 5571  cima 5622   Isom wiso 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495
This theorem is referenced by:  fnwelem  8067  ltweuz  13870
  Copyright terms: Public domain W3C validator