![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isowe2 | Structured version Visualization version GIF version |
Description: A weak form of isowe 7363 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
isowe2 | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . 4 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | imaeq2 6064 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐻 “ 𝑥) = (𝐻 “ 𝑦)) | |
3 | 2 | eleq1d 2814 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐻 “ 𝑥) ∈ V ↔ (𝐻 “ 𝑦) ∈ V)) |
4 | 3 | spvv 1992 | . . . . 5 ⊢ (∀𝑥(𝐻 “ 𝑥) ∈ V → (𝐻 “ 𝑦) ∈ V) |
5 | 4 | adantl 480 | . . . 4 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝐻 “ 𝑦) ∈ V) |
6 | 1, 5 | isofrlem 7354 | . . 3 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
7 | isosolem 7361 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) | |
8 | 7 | adantr 479 | . . 3 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) |
9 | 6, 8 | anim12d 607 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → ((𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
10 | df-we 5639 | . 2 ⊢ (𝑆 We 𝐵 ↔ (𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵)) | |
11 | df-we 5639 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
12 | 9, 10, 11 | 3imtr4g 295 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1531 ∈ wcel 2098 Vcvv 3473 Or wor 5593 Fr wfr 5634 We wwe 5636 “ cima 5685 Isom wiso 6554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 |
This theorem is referenced by: fnwelem 8142 ltweuz 13966 |
Copyright terms: Public domain | W3C validator |