| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isowe2 | Structured version Visualization version GIF version | ||
| Description: A weak form of isowe 7289 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| isowe2 | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
| 2 | imaeq2 6009 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐻 “ 𝑥) = (𝐻 “ 𝑦)) | |
| 3 | 2 | eleq1d 2818 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐻 “ 𝑥) ∈ V ↔ (𝐻 “ 𝑦) ∈ V)) |
| 4 | 3 | spvv 1989 | . . . . 5 ⊢ (∀𝑥(𝐻 “ 𝑥) ∈ V → (𝐻 “ 𝑦) ∈ V) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝐻 “ 𝑦) ∈ V) |
| 6 | 1, 5 | isofrlem 7280 | . . 3 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| 7 | isosolem 7287 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) |
| 9 | 6, 8 | anim12d 609 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → ((𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
| 10 | df-we 5574 | . 2 ⊢ (𝑆 We 𝐵 ↔ (𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵)) | |
| 11 | df-we 5574 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 12 | 9, 10, 11 | 3imtr4g 296 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2113 Vcvv 3437 Or wor 5526 Fr wfr 5569 We wwe 5571 “ cima 5622 Isom wiso 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 |
| This theorem is referenced by: fnwelem 8067 ltweuz 13870 |
| Copyright terms: Public domain | W3C validator |