|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isowe2 | Structured version Visualization version GIF version | ||
| Description: A weak form of isowe 7370 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| isowe2 | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
| 2 | imaeq2 6073 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐻 “ 𝑥) = (𝐻 “ 𝑦)) | |
| 3 | 2 | eleq1d 2825 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐻 “ 𝑥) ∈ V ↔ (𝐻 “ 𝑦) ∈ V)) | 
| 4 | 3 | spvv 1995 | . . . . 5 ⊢ (∀𝑥(𝐻 “ 𝑥) ∈ V → (𝐻 “ 𝑦) ∈ V) | 
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝐻 “ 𝑦) ∈ V) | 
| 6 | 1, 5 | isofrlem 7361 | . . 3 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) | 
| 7 | isosolem 7368 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) | 
| 9 | 6, 8 | anim12d 609 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → ((𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) | 
| 10 | df-we 5638 | . 2 ⊢ (𝑆 We 𝐵 ↔ (𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵)) | |
| 11 | df-we 5638 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 12 | 9, 10, 11 | 3imtr4g 296 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 Vcvv 3479 Or wor 5590 Fr wfr 5633 We wwe 5635 “ cima 5687 Isom wiso 6561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 | 
| This theorem is referenced by: fnwelem 8157 ltweuz 14003 | 
| Copyright terms: Public domain | W3C validator |