MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isowe2 Structured version   Visualization version   GIF version

Theorem isowe2 7343
Description: A weak form of isowe 7342 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isowe2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝑆 We 𝐵𝑅 We 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆   𝑥,𝐻

Proof of Theorem isowe2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 imaeq2 6053 . . . . . . 7 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
32eleq1d 2818 . . . . . 6 (𝑥 = 𝑦 → ((𝐻𝑥) ∈ V ↔ (𝐻𝑦) ∈ V))
43spvv 2000 . . . . 5 (∀𝑥(𝐻𝑥) ∈ V → (𝐻𝑦) ∈ V)
54adantl 482 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝐻𝑦) ∈ V)
61, 5isofrlem 7333 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
7 isosolem 7340 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))
87adantr 481 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝑆 Or 𝐵𝑅 Or 𝐴))
96, 8anim12d 609 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → ((𝑆 Fr 𝐵𝑆 Or 𝐵) → (𝑅 Fr 𝐴𝑅 Or 𝐴)))
10 df-we 5632 . 2 (𝑆 We 𝐵 ↔ (𝑆 Fr 𝐵𝑆 Or 𝐵))
11 df-we 5632 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
129, 10, 113imtr4g 295 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝑆 We 𝐵𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539  wcel 2106  Vcvv 3474   Or wor 5586   Fr wfr 5627   We wwe 5629  cima 5678   Isom wiso 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549
This theorem is referenced by:  fnwelem  8113  ltweuz  13922
  Copyright terms: Public domain W3C validator