| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wexp | Structured version Visualization version GIF version | ||
| Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) |
| Ref | Expression |
|---|---|
| wexp.1 | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} |
| Ref | Expression |
|---|---|
| wexp | ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr 5611 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | wefr 5611 | . . 3 ⊢ (𝑆 We 𝐵 → 𝑆 Fr 𝐵) | |
| 3 | wexp.1 | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} | |
| 4 | 3 | frxp 8065 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵) → 𝑇 Fr (𝐴 × 𝐵)) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 Fr (𝐴 × 𝐵)) |
| 6 | weso 5612 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 7 | weso 5612 | . . 3 ⊢ (𝑆 We 𝐵 → 𝑆 Or 𝐵) | |
| 8 | 3 | soxp 8068 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐴 × 𝐵)) |
| 9 | 6, 7, 8 | syl2an 596 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 Or (𝐴 × 𝐵)) |
| 10 | df-we 5576 | . 2 ⊢ (𝑇 We (𝐴 × 𝐵) ↔ (𝑇 Fr (𝐴 × 𝐵) ∧ 𝑇 Or (𝐴 × 𝐵))) | |
| 11 | 5, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 {copab 5157 Or wor 5528 Fr wfr 5571 We wwe 5573 × cxp 5619 ‘cfv 6489 1st c1st 7928 2nd c2nd 7929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 df-1st 7930 df-2nd 7931 |
| This theorem is referenced by: fnwelem 8070 leweon 9912 |
| Copyright terms: Public domain | W3C validator |