![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wexp | Structured version Visualization version GIF version |
Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) |
Ref | Expression |
---|---|
wexp.1 | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} |
Ref | Expression |
---|---|
wexp | ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr 5690 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
2 | wefr 5690 | . . 3 ⊢ (𝑆 We 𝐵 → 𝑆 Fr 𝐵) | |
3 | wexp.1 | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} | |
4 | 3 | frxp 8167 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵) → 𝑇 Fr (𝐴 × 𝐵)) |
5 | 1, 2, 4 | syl2an 595 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 Fr (𝐴 × 𝐵)) |
6 | weso 5691 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
7 | weso 5691 | . . 3 ⊢ (𝑆 We 𝐵 → 𝑆 Or 𝐵) | |
8 | 3 | soxp 8170 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐴 × 𝐵)) |
9 | 6, 7, 8 | syl2an 595 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 Or (𝐴 × 𝐵)) |
10 | df-we 5654 | . 2 ⊢ (𝑇 We (𝐴 × 𝐵) ↔ (𝑇 Fr (𝐴 × 𝐵) ∧ 𝑇 Or (𝐴 × 𝐵))) | |
11 | 5, 9, 10 | sylanbrc 582 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 {copab 5228 Or wor 5606 Fr wfr 5649 We wwe 5651 × cxp 5698 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: fnwelem 8172 leweon 10080 |
Copyright terms: Public domain | W3C validator |