MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wexp Structured version   Visualization version   GIF version

Theorem wexp 8112
Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
Hypothesis
Ref Expression
wexp.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}
Assertion
Ref Expression
wexp ((𝑅 We 𝐴𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)

Proof of Theorem wexp
StepHypRef Expression
1 wefr 5631 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
2 wefr 5631 . . 3 (𝑆 We 𝐵𝑆 Fr 𝐵)
3 wexp.1 . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}
43frxp 8108 . . 3 ((𝑅 Fr 𝐴𝑆 Fr 𝐵) → 𝑇 Fr (𝐴 × 𝐵))
51, 2, 4syl2an 596 . 2 ((𝑅 We 𝐴𝑆 We 𝐵) → 𝑇 Fr (𝐴 × 𝐵))
6 weso 5632 . . 3 (𝑅 We 𝐴𝑅 Or 𝐴)
7 weso 5632 . . 3 (𝑆 We 𝐵𝑆 Or 𝐵)
83soxp 8111 . . 3 ((𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐴 × 𝐵))
96, 7, 8syl2an 596 . 2 ((𝑅 We 𝐴𝑆 We 𝐵) → 𝑇 Or (𝐴 × 𝐵))
10 df-we 5596 . 2 (𝑇 We (𝐴 × 𝐵) ↔ (𝑇 Fr (𝐴 × 𝐵) ∧ 𝑇 Or (𝐴 × 𝐵)))
115, 9, 10sylanbrc 583 1 ((𝑅 We 𝐴𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5110  {copab 5172   Or wor 5548   Fr wfr 5591   We wwe 5593   × cxp 5639  cfv 6514  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-1st 7971  df-2nd 7972
This theorem is referenced by:  fnwelem  8113  leweon  9971
  Copyright terms: Public domain W3C validator