MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wexp Structured version   Visualization version   GIF version

Theorem wexp 7971
Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
Hypothesis
Ref Expression
wexp.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}
Assertion
Ref Expression
wexp ((𝑅 We 𝐴𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)

Proof of Theorem wexp
StepHypRef Expression
1 wefr 5579 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
2 wefr 5579 . . 3 (𝑆 We 𝐵𝑆 Fr 𝐵)
3 wexp.1 . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}
43frxp 7967 . . 3 ((𝑅 Fr 𝐴𝑆 Fr 𝐵) → 𝑇 Fr (𝐴 × 𝐵))
51, 2, 4syl2an 596 . 2 ((𝑅 We 𝐴𝑆 We 𝐵) → 𝑇 Fr (𝐴 × 𝐵))
6 weso 5580 . . 3 (𝑅 We 𝐴𝑅 Or 𝐴)
7 weso 5580 . . 3 (𝑆 We 𝐵𝑆 Or 𝐵)
83soxp 7970 . . 3 ((𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐴 × 𝐵))
96, 7, 8syl2an 596 . 2 ((𝑅 We 𝐴𝑆 We 𝐵) → 𝑇 Or (𝐴 × 𝐵))
10 df-we 5546 . 2 (𝑇 We (𝐴 × 𝐵) ↔ (𝑇 Fr (𝐴 × 𝐵) ∧ 𝑇 Or (𝐴 × 𝐵)))
115, 9, 10sylanbrc 583 1 ((𝑅 We 𝐴𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106   class class class wbr 5074  {copab 5136   Or wor 5502   Fr wfr 5541   We wwe 5543   × cxp 5587  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  fnwelem  7972  leweon  9767
  Copyright terms: Public domain W3C validator