![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wexp | Structured version Visualization version GIF version |
Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) |
Ref | Expression |
---|---|
wexp.1 | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} |
Ref | Expression |
---|---|
wexp | ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr 5663 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
2 | wefr 5663 | . . 3 ⊢ (𝑆 We 𝐵 → 𝑆 Fr 𝐵) | |
3 | wexp.1 | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} | |
4 | 3 | frxp 8126 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵) → 𝑇 Fr (𝐴 × 𝐵)) |
5 | 1, 2, 4 | syl2an 595 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 Fr (𝐴 × 𝐵)) |
6 | weso 5664 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
7 | weso 5664 | . . 3 ⊢ (𝑆 We 𝐵 → 𝑆 Or 𝐵) | |
8 | 3 | soxp 8129 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐴 × 𝐵)) |
9 | 6, 7, 8 | syl2an 595 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 Or (𝐴 × 𝐵)) |
10 | df-we 5630 | . 2 ⊢ (𝑇 We (𝐴 × 𝐵) ↔ (𝑇 Fr (𝐴 × 𝐵) ∧ 𝑇 Or (𝐴 × 𝐵))) | |
11 | 5, 9, 10 | sylanbrc 582 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 class class class wbr 5143 {copab 5205 Or wor 5584 Fr wfr 5625 We wwe 5627 × cxp 5671 ‘cfv 6543 1st c1st 7986 2nd c2nd 7987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7988 df-2nd 7989 |
This theorem is referenced by: fnwelem 8131 leweon 10029 |
Copyright terms: Public domain | W3C validator |