| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wexp | Structured version Visualization version GIF version | ||
| Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) |
| Ref | Expression |
|---|---|
| wexp.1 | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} |
| Ref | Expression |
|---|---|
| wexp | ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr 5613 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | wefr 5613 | . . 3 ⊢ (𝑆 We 𝐵 → 𝑆 Fr 𝐵) | |
| 3 | wexp.1 | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} | |
| 4 | 3 | frxp 8066 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵) → 𝑇 Fr (𝐴 × 𝐵)) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 Fr (𝐴 × 𝐵)) |
| 6 | weso 5614 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 7 | weso 5614 | . . 3 ⊢ (𝑆 We 𝐵 → 𝑆 Or 𝐵) | |
| 8 | 3 | soxp 8069 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐴 × 𝐵)) |
| 9 | 6, 7, 8 | syl2an 596 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 Or (𝐴 × 𝐵)) |
| 10 | df-we 5578 | . 2 ⊢ (𝑇 We (𝐴 × 𝐵) ↔ (𝑇 Fr (𝐴 × 𝐵) ∧ 𝑇 Or (𝐴 × 𝐵))) | |
| 11 | 5, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑆 We 𝐵) → 𝑇 We (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 {copab 5157 Or wor 5530 Fr wfr 5573 We wwe 5575 × cxp 5621 ‘cfv 6486 1st c1st 7929 2nd c2nd 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7931 df-2nd 7932 |
| This theorem is referenced by: fnwelem 8071 leweon 9924 |
| Copyright terms: Public domain | W3C validator |