![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > weeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
weeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | freq2 5283 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) | |
2 | soeq2 5253 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) | |
3 | 1, 2 | anbi12d 625 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵))) |
4 | df-we 5273 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
5 | df-we 5273 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 306 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 Or wor 5232 Fr wfr 5268 We wwe 5270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-ral 3094 df-in 3776 df-ss 3783 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 |
This theorem is referenced by: ordeq 5948 0we1 7826 oieq2 8660 hartogslem1 8689 wemapwe 8844 ween 9144 dfac8 9245 weth 9605 fpwwe2cbv 9740 fpwwe2lem2 9742 fpwwe2lem5 9744 fpwwecbv 9754 fpwwelem 9755 canthwelem 9760 canthwe 9761 pwfseqlem4a 9771 pwfseqlem4 9772 ltweuz 13015 ltwenn 13016 bpolylem 15115 ltbwe 19795 vitali 23721 weeq12d 38395 aomclem6 38414 omeiunle 41477 |
Copyright terms: Public domain | W3C validator |