| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| weeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freq2 5627 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) | |
| 2 | soeq2 5588 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵))) |
| 4 | df-we 5613 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 5 | df-we 5613 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Or wor 5565 Fr wfr 5608 We wwe 5610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ral 3053 df-ss 3948 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 |
| This theorem is referenced by: weeq12d 5648 ordeq 6364 0we1 8523 oieq2 9532 wemapwe 9716 ween 10054 dfac8 10155 weth 10514 pwfseqlem4a 10680 pwfseqlem4 10681 ltweuz 13984 ltwenn 13985 bpolylem 16069 ltbwe 22007 vitali 25571 aomclem6 43050 omeiunle 46513 |
| Copyright terms: Public domain | W3C validator |