MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weeq2 Structured version   Visualization version   GIF version

Theorem weeq2 5569
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
weeq2 (𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))

Proof of Theorem weeq2
StepHypRef Expression
1 freq2 5551 . . 3 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 soeq2 5516 . . 3 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
31, 2anbi12d 630 . 2 (𝐴 = 𝐵 → ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵)))
4 df-we 5537 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5537 . 2 (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539   Or wor 5493   Fr wfr 5532   We wwe 5534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900  df-po 5494  df-so 5495  df-fr 5535  df-we 5537
This theorem is referenced by:  ordeq  6258  0we1  8298  oieq2  9202  hartogslem1  9231  wemapwe  9385  ween  9722  dfac8  9822  weth  10182  fpwwe2cbv  10317  fpwwe2lem2  10319  fpwwe2lem4  10321  fpwwecbv  10331  fpwwelem  10332  canthwelem  10337  canthwe  10338  pwfseqlem4a  10348  pwfseqlem4  10349  ltweuz  13609  ltwenn  13610  bpolylem  15686  ltbwe  21155  vitali  24682  weeq12d  40781  aomclem6  40800  omeiunle  43945
  Copyright terms: Public domain W3C validator