![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > weeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
weeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | freq2 5668 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) | |
2 | soeq2 5630 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) | |
3 | 1, 2 | anbi12d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵))) |
4 | df-we 5654 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
5 | df-we 5654 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Or wor 5606 Fr wfr 5649 We wwe 5651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ral 3068 df-ss 3993 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 |
This theorem is referenced by: weeq12d 5689 ordeq 6402 0we1 8562 oieq2 9582 wemapwe 9766 ween 10104 dfac8 10205 weth 10564 pwfseqlem4a 10730 pwfseqlem4 10731 ltweuz 14012 ltwenn 14013 bpolylem 16096 ltbwe 22085 vitali 25667 aomclem6 43016 omeiunle 46438 |
Copyright terms: Public domain | W3C validator |