| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| weeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freq2 5599 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) | |
| 2 | soeq2 5561 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵))) |
| 4 | df-we 5586 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 5 | df-we 5586 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Or wor 5538 Fr wfr 5581 We wwe 5583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-ss 3928 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 |
| This theorem is referenced by: weeq12d 5620 ordeq 6327 0we1 8447 oieq2 9442 wemapwe 9626 ween 9964 dfac8 10065 weth 10424 pwfseqlem4a 10590 pwfseqlem4 10591 ltweuz 13902 ltwenn 13903 bpolylem 15990 ltbwe 21927 vitali 25490 aomclem6 43021 omeiunle 46488 |
| Copyright terms: Public domain | W3C validator |