MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weeq2 Structured version   Visualization version   GIF version

Theorem weeq2 5647
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
weeq2 (𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))

Proof of Theorem weeq2
StepHypRef Expression
1 freq2 5627 . . 3 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 soeq2 5588 . . 3 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵)))
4 df-we 5613 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5613 . 2 (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540   Or wor 5565   Fr wfr 5608   We wwe 5610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2728  df-ral 3053  df-ss 3948  df-po 5566  df-so 5567  df-fr 5611  df-we 5613
This theorem is referenced by:  weeq12d  5648  ordeq  6364  0we1  8523  oieq2  9532  wemapwe  9716  ween  10054  dfac8  10155  weth  10514  pwfseqlem4a  10680  pwfseqlem4  10681  ltweuz  13984  ltwenn  13985  bpolylem  16069  ltbwe  22007  vitali  25571  aomclem6  43050  omeiunle  46513
  Copyright terms: Public domain W3C validator