MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weeq2 Structured version   Visualization version   GIF version

Theorem weeq2 5578
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
weeq2 (𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))

Proof of Theorem weeq2
StepHypRef Expression
1 freq2 5560 . . 3 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 soeq2 5525 . . 3 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵)))
4 df-we 5546 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5546 . 2 (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539   Or wor 5502   Fr wfr 5541   We wwe 5543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-po 5503  df-so 5504  df-fr 5544  df-we 5546
This theorem is referenced by:  ordeq  6273  0we1  8336  oieq2  9272  hartogslem1  9301  wemapwe  9455  ween  9791  dfac8  9891  weth  10251  fpwwe2cbv  10386  fpwwe2lem2  10388  fpwwe2lem4  10390  fpwwecbv  10400  fpwwelem  10401  canthwelem  10406  canthwe  10407  pwfseqlem4a  10417  pwfseqlem4  10418  ltweuz  13681  ltwenn  13682  bpolylem  15758  ltbwe  21245  vitali  24777  weeq12d  40865  aomclem6  40884  omeiunle  44055
  Copyright terms: Public domain W3C validator