| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| weeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freq2 5584 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) | |
| 2 | soeq2 5546 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵))) |
| 4 | df-we 5571 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 5 | df-we 5571 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 We 𝐴 ↔ 𝑅 We 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Or wor 5523 Fr wfr 5566 We wwe 5568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ral 3048 df-ss 3919 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 |
| This theorem is referenced by: weeq12d 5605 ordeq 6313 0we1 8421 oieq2 9399 wemapwe 9587 ween 9926 dfac8 10027 weth 10386 pwfseqlem4a 10552 pwfseqlem4 10553 ltweuz 13868 ltwenn 13869 bpolylem 15955 ltbwe 21980 vitali 25542 aomclem6 43098 omeiunle 46561 |
| Copyright terms: Public domain | W3C validator |