MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wess Structured version   Visualization version   GIF version

Theorem wess 5671
Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
wess (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))

Proof of Theorem wess
StepHypRef Expression
1 frss 5649 . . 3 (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
2 soss 5612 . . 3 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
31, 2anim12d 609 . 2 (𝐴𝐵 → ((𝑅 Fr 𝐵𝑅 Or 𝐵) → (𝑅 Fr 𝐴𝑅 Or 𝐴)))
4 df-we 5639 . 2 (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵))
5 df-we 5639 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
63, 4, 53imtr4g 296 1 (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3951   Or wor 5591   Fr wfr 5634   We wwe 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3062  df-ss 3968  df-po 5592  df-so 5593  df-fr 5637  df-we 5639
This theorem is referenced by:  wefrc  5679  trssord  6401  ordelord  6406  dford5  7804  omsinds  7908  fnwelem  8156  wfrlem5OLD  8353  dfrecs3  8412  dfrecs3OLD  8413  ordtypelem8  9565  oismo  9580  cantnfcl  9707  infxpenlem  10053  ac10ct  10074  dfac12lem2  10185  cflim2  10303  cofsmo  10309  hsmexlem1  10466  smobeth  10626  canthwelem  10690  gruina  10858  ltwefz  14004  welb  37743  dnwech  43060  aomclem4  43069  dfac11  43074  oaun3lem1  43387  onfrALTlem3  44564  onfrALTlem3VD  44907
  Copyright terms: Public domain W3C validator