MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wess Structured version   Visualization version   GIF version

Theorem wess 5512
Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
wess (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))

Proof of Theorem wess
StepHypRef Expression
1 frss 5492 . . 3 (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
2 soss 5462 . . 3 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
31, 2anim12d 612 . 2 (𝐴𝐵 → ((𝑅 Fr 𝐵𝑅 Or 𝐵) → (𝑅 Fr 𝐴𝑅 Or 𝐴)))
4 df-we 5485 . 2 (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵))
5 df-we 5485 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
63, 4, 53imtr4g 299 1 (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wss 3843   Or wor 5441   Fr wfr 5480   We wwe 5482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-v 3400  df-in 3850  df-ss 3860  df-po 5442  df-so 5443  df-fr 5483  df-we 5485
This theorem is referenced by:  wefrc  5519  trssord  6189  ordelord  6194  omsinds  7619  fnwelem  7851  wfrlem5  7988  dfrecs3  8038  ordtypelem8  9062  oismo  9077  cantnfcl  9203  infxpenlem  9513  ac10ct  9534  dfac12lem2  9644  cflim2  9763  cofsmo  9769  hsmexlem1  9926  smobeth  10086  canthwelem  10150  gruina  10318  ltwefz  13422  dford5  33244  welb  35517  dnwech  40445  aomclem4  40454  dfac11  40459  onfrALTlem3  41702  onfrALTlem3VD  42045
  Copyright terms: Public domain W3C validator