MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wess Structured version   Visualization version   GIF version

Theorem wess 5600
Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
wess (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))

Proof of Theorem wess
StepHypRef Expression
1 frss 5578 . . 3 (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
2 soss 5542 . . 3 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
31, 2anim12d 609 . 2 (𝐴𝐵 → ((𝑅 Fr 𝐵𝑅 Or 𝐵) → (𝑅 Fr 𝐴𝑅 Or 𝐴)))
4 df-we 5569 . 2 (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵))
5 df-we 5569 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
63, 4, 53imtr4g 296 1 (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3900   Or wor 5521   Fr wfr 5564   We wwe 5566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3046  df-ss 3917  df-po 5522  df-so 5523  df-fr 5567  df-we 5569
This theorem is referenced by:  wefrc  5608  trssord  6319  ordelord  6324  dford5  7712  omsinds  7812  fnwelem  8056  dfrecs3  8287  ordtypelem8  9406  oismo  9421  cantnfcl  9552  infxpenlem  9896  ac10ct  9917  dfac12lem2  10028  cflim2  10146  cofsmo  10152  hsmexlem1  10309  smobeth  10469  canthwelem  10533  gruina  10701  ltwefz  13862  welb  37755  dnwech  43060  aomclem4  43069  dfac11  43074  oaun3lem1  43386  onfrALTlem3  44556  onfrALTlem3VD  44898
  Copyright terms: Public domain W3C validator