![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wess | Structured version Visualization version GIF version |
Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.) |
Ref | Expression |
---|---|
wess | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frss 5645 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
2 | soss 5610 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
3 | 1, 2 | anim12d 608 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
4 | df-we 5635 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
5 | df-we 5635 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3947 Or wor 5589 Fr wfr 5630 We wwe 5632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-v 3473 df-in 3954 df-ss 3964 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 |
This theorem is referenced by: wefrc 5672 trssord 6386 ordelord 6391 dford5 7786 omsinds 7891 omsindsOLD 7892 fnwelem 8136 wfrlem5OLD 8333 dfrecs3 8392 dfrecs3OLD 8393 ordtypelem8 9548 oismo 9563 cantnfcl 9690 infxpenlem 10036 ac10ct 10057 dfac12lem2 10167 cflim2 10286 cofsmo 10292 hsmexlem1 10449 smobeth 10609 canthwelem 10673 gruina 10841 ltwefz 13960 welb 37209 dnwech 42472 aomclem4 42481 dfac11 42486 oaun3lem1 42803 onfrALTlem3 43983 onfrALTlem3VD 44326 |
Copyright terms: Public domain | W3C validator |