MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wess Structured version   Visualization version   GIF version

Theorem wess 5665
Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
wess (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))

Proof of Theorem wess
StepHypRef Expression
1 frss 5645 . . 3 (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
2 soss 5610 . . 3 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
31, 2anim12d 608 . 2 (𝐴𝐵 → ((𝑅 Fr 𝐵𝑅 Or 𝐵) → (𝑅 Fr 𝐴𝑅 Or 𝐴)))
4 df-we 5635 . 2 (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵))
5 df-we 5635 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
63, 4, 53imtr4g 296 1 (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3947   Or wor 5589   Fr wfr 5630   We wwe 5632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-v 3473  df-in 3954  df-ss 3964  df-po 5590  df-so 5591  df-fr 5633  df-we 5635
This theorem is referenced by:  wefrc  5672  trssord  6386  ordelord  6391  dford5  7786  omsinds  7891  omsindsOLD  7892  fnwelem  8136  wfrlem5OLD  8333  dfrecs3  8392  dfrecs3OLD  8393  ordtypelem8  9548  oismo  9563  cantnfcl  9690  infxpenlem  10036  ac10ct  10057  dfac12lem2  10167  cflim2  10286  cofsmo  10292  hsmexlem1  10449  smobeth  10609  canthwelem  10673  gruina  10841  ltwefz  13960  welb  37209  dnwech  42472  aomclem4  42481  dfac11  42486  oaun3lem1  42803  onfrALTlem3  43983  onfrALTlem3VD  44326
  Copyright terms: Public domain W3C validator