![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wess | Structured version Visualization version GIF version |
Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.) |
Ref | Expression |
---|---|
wess | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frss 5277 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
2 | soss 5249 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
3 | 1, 2 | anim12d 603 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
4 | df-we 5271 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
5 | df-we 5271 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
6 | 3, 4, 5 | 3imtr4g 288 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ⊆ wss 3767 Or wor 5230 Fr wfr 5266 We wwe 5268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-ral 3092 df-in 3774 df-ss 3781 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 |
This theorem is referenced by: wefrc 5304 trssord 5956 ordelord 5961 omsinds 7316 fnwelem 7527 wfrlem5 7656 dfrecs3 7706 ordtypelem8 8670 oismo 8685 cantnfcl 8812 infxpenlem 9120 ac10ct 9141 dfac12lem2 9252 cflim2 9371 cofsmo 9377 hsmexlem1 9534 smobeth 9694 canthwelem 9758 gruina 9926 ltwefz 13013 dford5 32115 welb 34011 dnwech 38391 aomclem4 38400 dfac11 38405 onfrALTlem3 39518 onfrALTlem3VD 39871 |
Copyright terms: Public domain | W3C validator |