| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wess | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.) |
| Ref | Expression |
|---|---|
| wess | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frss 5587 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
| 2 | soss 5551 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
| 4 | df-we 5578 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
| 5 | df-we 5578 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3905 Or wor 5530 Fr wfr 5573 We wwe 5575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 df-ss 3922 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 |
| This theorem is referenced by: wefrc 5617 trssord 6328 ordelord 6333 dford5 7724 omsinds 7827 fnwelem 8071 dfrecs3 8302 ordtypelem8 9436 oismo 9451 cantnfcl 9582 infxpenlem 9926 ac10ct 9947 dfac12lem2 10058 cflim2 10176 cofsmo 10182 hsmexlem1 10339 smobeth 10499 canthwelem 10563 gruina 10731 ltwefz 13888 welb 37715 dnwech 43021 aomclem4 43030 dfac11 43035 oaun3lem1 43347 onfrALTlem3 44518 onfrALTlem3VD 44860 |
| Copyright terms: Public domain | W3C validator |