| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wess | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.) |
| Ref | Expression |
|---|---|
| wess | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frss 5585 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
| 2 | soss 5549 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
| 4 | df-we 5576 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
| 5 | df-we 5576 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3899 Or wor 5528 Fr wfr 5571 We wwe 5573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3050 df-ss 3916 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 |
| This theorem is referenced by: wefrc 5615 trssord 6331 ordelord 6336 dford5 7726 omsinds 7826 fnwelem 8070 dfrecs3 8301 ordtypelem8 9421 oismo 9436 cantnfcl 9567 infxpenlem 9914 ac10ct 9935 dfac12lem2 10046 cflim2 10164 cofsmo 10170 hsmexlem1 10327 smobeth 10487 canthwelem 10551 gruina 10719 ltwefz 13880 welb 37786 dnwech 43155 aomclem4 43164 dfac11 43169 oaun3lem1 43481 onfrALTlem3 44651 onfrALTlem3VD 44993 |
| Copyright terms: Public domain | W3C validator |