![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wess | Structured version Visualization version GIF version |
Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.) |
Ref | Expression |
---|---|
wess | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frss 5664 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
2 | soss 5628 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
3 | 1, 2 | anim12d 608 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
4 | df-we 5654 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
5 | df-we 5654 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3976 Or wor 5606 Fr wfr 5649 We wwe 5651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 df-ss 3993 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 |
This theorem is referenced by: wefrc 5694 trssord 6412 ordelord 6417 dford5 7819 omsinds 7924 omsindsOLD 7925 fnwelem 8172 wfrlem5OLD 8369 dfrecs3 8428 dfrecs3OLD 8429 ordtypelem8 9594 oismo 9609 cantnfcl 9736 infxpenlem 10082 ac10ct 10103 dfac12lem2 10214 cflim2 10332 cofsmo 10338 hsmexlem1 10495 smobeth 10655 canthwelem 10719 gruina 10887 ltwefz 14014 welb 37696 dnwech 43005 aomclem4 43014 dfac11 43019 oaun3lem1 43336 onfrALTlem3 44515 onfrALTlem3VD 44858 |
Copyright terms: Public domain | W3C validator |