| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wess | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.) |
| Ref | Expression |
|---|---|
| wess | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frss 5602 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
| 2 | soss 5566 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
| 4 | df-we 5593 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
| 5 | df-we 5593 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3914 Or wor 5545 Fr wfr 5588 We wwe 5590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 df-ss 3931 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 |
| This theorem is referenced by: wefrc 5632 trssord 6349 ordelord 6354 dford5 7760 omsinds 7863 fnwelem 8110 dfrecs3 8341 ordtypelem8 9478 oismo 9493 cantnfcl 9620 infxpenlem 9966 ac10ct 9987 dfac12lem2 10098 cflim2 10216 cofsmo 10222 hsmexlem1 10379 smobeth 10539 canthwelem 10603 gruina 10771 ltwefz 13928 welb 37730 dnwech 43037 aomclem4 43046 dfac11 43051 oaun3lem1 43363 onfrALTlem3 44534 onfrALTlem3VD 44876 |
| Copyright terms: Public domain | W3C validator |