| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wess | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.) |
| Ref | Expression |
|---|---|
| wess | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frss 5618 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
| 2 | soss 5581 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
| 4 | df-we 5608 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
| 5 | df-we 5608 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3926 Or wor 5560 Fr wfr 5603 We wwe 5605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3052 df-ss 3943 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 |
| This theorem is referenced by: wefrc 5648 trssord 6369 ordelord 6374 dford5 7778 omsinds 7882 fnwelem 8130 wfrlem5OLD 8327 dfrecs3 8386 dfrecs3OLD 8387 ordtypelem8 9539 oismo 9554 cantnfcl 9681 infxpenlem 10027 ac10ct 10048 dfac12lem2 10159 cflim2 10277 cofsmo 10283 hsmexlem1 10440 smobeth 10600 canthwelem 10664 gruina 10832 ltwefz 13981 welb 37760 dnwech 43072 aomclem4 43081 dfac11 43086 oaun3lem1 43398 onfrALTlem3 44569 onfrALTlem3VD 44911 |
| Copyright terms: Public domain | W3C validator |