MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wess Structured version   Visualization version   GIF version

Theorem wess 5567
Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
wess (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))

Proof of Theorem wess
StepHypRef Expression
1 frss 5547 . . 3 (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
2 soss 5514 . . 3 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
31, 2anim12d 608 . 2 (𝐴𝐵 → ((𝑅 Fr 𝐵𝑅 Or 𝐵) → (𝑅 Fr 𝐴𝑅 Or 𝐴)))
4 df-we 5537 . 2 (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵))
5 df-we 5537 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
63, 4, 53imtr4g 295 1 (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3883   Or wor 5493   Fr wfr 5532   We wwe 5534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900  df-po 5494  df-so 5495  df-fr 5535  df-we 5537
This theorem is referenced by:  wefrc  5574  trssord  6268  ordelord  6273  omsinds  7708  omsindsOLD  7709  fnwelem  7943  wfrlem5OLD  8115  dfrecs3  8174  dfrecs3OLD  8175  ordtypelem8  9214  oismo  9229  cantnfcl  9355  infxpenlem  9700  ac10ct  9721  dfac12lem2  9831  cflim2  9950  cofsmo  9956  hsmexlem1  10113  smobeth  10273  canthwelem  10337  gruina  10505  ltwefz  13611  dford5  33573  welb  35821  dnwech  40789  aomclem4  40798  dfac11  40803  onfrALTlem3  42053  onfrALTlem3VD  42396
  Copyright terms: Public domain W3C validator