| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wess | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.) |
| Ref | Expression |
|---|---|
| wess | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frss 5578 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
| 2 | soss 5542 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
| 3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
| 4 | df-we 5569 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
| 5 | df-we 5569 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3900 Or wor 5521 Fr wfr 5564 We wwe 5566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3046 df-ss 3917 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 |
| This theorem is referenced by: wefrc 5608 trssord 6319 ordelord 6324 dford5 7712 omsinds 7812 fnwelem 8056 dfrecs3 8287 ordtypelem8 9406 oismo 9421 cantnfcl 9552 infxpenlem 9896 ac10ct 9917 dfac12lem2 10028 cflim2 10146 cofsmo 10152 hsmexlem1 10309 smobeth 10469 canthwelem 10533 gruina 10701 ltwefz 13862 welb 37755 dnwech 43060 aomclem4 43069 dfac11 43074 oaun3lem1 43386 onfrALTlem3 44556 onfrALTlem3VD 44898 |
| Copyright terms: Public domain | W3C validator |