![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wess | Structured version Visualization version GIF version |
Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.) |
Ref | Expression |
---|---|
wess | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frss 5653 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
2 | soss 5617 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
3 | 1, 2 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
4 | df-we 5643 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
5 | df-we 5643 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3963 Or wor 5596 Fr wfr 5638 We wwe 5640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3060 df-ss 3980 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 |
This theorem is referenced by: wefrc 5683 trssord 6403 ordelord 6408 dford5 7803 omsinds 7908 omsindsOLD 7909 fnwelem 8155 wfrlem5OLD 8352 dfrecs3 8411 dfrecs3OLD 8412 ordtypelem8 9563 oismo 9578 cantnfcl 9705 infxpenlem 10051 ac10ct 10072 dfac12lem2 10183 cflim2 10301 cofsmo 10307 hsmexlem1 10464 smobeth 10624 canthwelem 10688 gruina 10856 ltwefz 14001 welb 37723 dnwech 43037 aomclem4 43046 dfac11 43051 oaun3lem1 43364 onfrALTlem3 44542 onfrALTlem3VD 44885 |
Copyright terms: Public domain | W3C validator |