MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr6 Structured version   Visualization version   GIF version

Theorem dffr6 5575
Description: Alternate definition of df-fr 5572. See dffr5 35819 for a definition without dummy variables (but note that their equivalence uses ax-sep 5236). (Contributed by BJ, 16-Nov-2024.)
Assertion
Ref Expression
dffr6 (𝑅 Fr 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧

Proof of Theorem dffr6
StepHypRef Expression
1 velpw 4554 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
21bicomi 224 . . . . . 6 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
3 velsn 4591 . . . . . . . 8 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
43bicomi 224 . . . . . . 7 (𝑥 = ∅ ↔ 𝑥 ∈ {∅})
54necon3abii 2975 . . . . . 6 (𝑥 ≠ ∅ ↔ ¬ 𝑥 ∈ {∅})
62, 5anbi12i 628 . . . . 5 ((𝑥𝐴𝑥 ≠ ∅) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅}))
7 eldif 3908 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅}))
86, 7bitr4i 278 . . . 4 ((𝑥𝐴𝑥 ≠ ∅) ↔ 𝑥 ∈ (𝒫 𝐴 ∖ {∅}))
98imbi1i 349 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
109albii 1820 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
11 df-fr 5572 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
12 df-ral 3049 . 2 (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
1310, 11, 123bitr4i 303 1 (𝑅 Fr 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  cdif 3895  wss 3898  c0 4282  𝒫 cpw 4549  {csn 4575   class class class wbr 5093   Fr wfr 5569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-v 3439  df-dif 3901  df-ss 3915  df-pw 4551  df-sn 4576  df-fr 5572
This theorem is referenced by:  frd  5576
  Copyright terms: Public domain W3C validator