![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffr6 | Structured version Visualization version GIF version |
Description: Alternate definition of df-fr 5652. See dffr5 35716 for a definition without dummy variables (but note that their equivalence uses ax-sep 5317). (Contributed by BJ, 16-Nov-2024.) |
Ref | Expression |
---|---|
dffr6 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velpw 4627 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
2 | 1 | bicomi 224 | . . . . . 6 ⊢ (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ 𝒫 𝐴) |
3 | velsn 4664 | . . . . . . . 8 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
4 | 3 | bicomi 224 | . . . . . . 7 ⊢ (𝑥 = ∅ ↔ 𝑥 ∈ {∅}) |
5 | 4 | necon3abii 2993 | . . . . . 6 ⊢ (𝑥 ≠ ∅ ↔ ¬ 𝑥 ∈ {∅}) |
6 | 2, 5 | anbi12i 627 | . . . . 5 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅})) |
7 | eldif 3986 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅})) | |
8 | 6, 7 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ↔ 𝑥 ∈ (𝒫 𝐴 ∖ {∅})) |
9 | 8 | imbi1i 349 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
10 | 9 | albii 1817 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
11 | df-fr 5652 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) | |
12 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 ↔ ∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) | |
13 | 10, 11, 12 | 3bitr4i 303 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 Fr wfr 5649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-v 3490 df-dif 3979 df-ss 3993 df-pw 4624 df-sn 4649 df-fr 5652 |
This theorem is referenced by: frd 5656 |
Copyright terms: Public domain | W3C validator |