![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffr6 | Structured version Visualization version GIF version |
Description: Alternate definition of df-fr 5633. See dffr5 35479 for a definition without dummy variables (but note that their equivalence uses ax-sep 5300). (Contributed by BJ, 16-Nov-2024.) |
Ref | Expression |
---|---|
dffr6 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velpw 4609 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
2 | 1 | bicomi 223 | . . . . . 6 ⊢ (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ 𝒫 𝐴) |
3 | velsn 4646 | . . . . . . . 8 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
4 | 3 | bicomi 223 | . . . . . . 7 ⊢ (𝑥 = ∅ ↔ 𝑥 ∈ {∅}) |
5 | 4 | necon3abii 2976 | . . . . . 6 ⊢ (𝑥 ≠ ∅ ↔ ¬ 𝑥 ∈ {∅}) |
6 | 2, 5 | anbi12i 626 | . . . . 5 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅})) |
7 | eldif 3954 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅})) | |
8 | 6, 7 | bitr4i 277 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ↔ 𝑥 ∈ (𝒫 𝐴 ∖ {∅})) |
9 | 8 | imbi1i 348 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
10 | 9 | albii 1813 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
11 | df-fr 5633 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) | |
12 | df-ral 3051 | . 2 ⊢ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 ↔ ∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) | |
13 | 10, 11, 12 | 3bitr4i 302 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∀wral 3050 ∃wrex 3059 ∖ cdif 3941 ⊆ wss 3944 ∅c0 4322 𝒫 cpw 4604 {csn 4630 class class class wbr 5149 Fr wfr 5630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-v 3463 df-dif 3947 df-ss 3961 df-pw 4606 df-sn 4631 df-fr 5633 |
This theorem is referenced by: frd 5637 |
Copyright terms: Public domain | W3C validator |