MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweon Structured version   Visualization version   GIF version

Theorem epweon 7516
Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
epweon E We On

Proof of Theorem epweon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfr 6211 . 2 E Fr On
2 eloni 6182 . . . 4 (𝑥 ∈ On → Ord 𝑥)
3 eloni 6182 . . . 4 (𝑦 ∈ On → Ord 𝑦)
4 ordtri3or 6204 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
5 epel 5437 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 biid 264 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
7 epel 5437 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
85, 6, 73orbi123i 1157 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
94, 8sylibr 237 . . . 4 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
102, 3, 9syl2an 599 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1110rgen2 3115 . 2 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
12 dfwe2 7515 . 2 ( E We On ↔ ( E Fr On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
131, 11, 12mpbir2an 711 1 E We On
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3o 1087  wcel 2114  wral 3053   class class class wbr 5030   E cep 5433   Fr wfr 5480   We wwe 5482  Ord word 6171  Oncon0 6172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-11 2162  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-ord 6175  df-on 6176
This theorem is referenced by:  ordon  7517  omsinds  7619  onnseq  8010  dfrecs3  8038  tfr1ALT  8065  tfr2ALT  8066  tfr3ALT  8067  ordunifi  8842  ordtypelem8  9062  oismo  9077  cantnfcl  9203  leweon  9511  r0weon  9512  ac10ct  9534  dfac12lem2  9644  cflim2  9763  cofsmo  9769  hsmexlem1  9926  smobeth  10086  gruina  10318  ltsopi  10388  dford5  33244  on2recsfn  33467  on2recsov  33468  on2ind  33469  on3ind  33470  finminlem  34145  dnwech  40445  aomclem4  40454
  Copyright terms: Public domain W3C validator