| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epweon | Structured version Visualization version GIF version | ||
| Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. For a shorter proof requiring ax-un 7674, see epweonALT 7715. (Contributed by NM, 1-Nov-2003.) Avoid ax-un 7674. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| epweon | ⊢ E We On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfr 6350 | . 2 ⊢ E Fr On | |
| 2 | df-po 5527 | . . . 4 ⊢ ( E Po On ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) | |
| 3 | eloni 6321 | . . . . . . . . 9 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 4 | ordirr 6329 | . . . . . . . . 9 ⊢ (Ord 𝑥 → ¬ 𝑥 ∈ 𝑥) | |
| 5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ On → ¬ 𝑥 ∈ 𝑥) |
| 6 | epel 5522 | . . . . . . . 8 ⊢ (𝑥 E 𝑥 ↔ 𝑥 ∈ 𝑥) | |
| 7 | 5, 6 | sylnibr 329 | . . . . . . 7 ⊢ (𝑥 ∈ On → ¬ 𝑥 E 𝑥) |
| 8 | ontr1 6358 | . . . . . . . 8 ⊢ (𝑧 ∈ On → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧)) | |
| 9 | epel 5522 | . . . . . . . . 9 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 10 | epel 5522 | . . . . . . . . 9 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
| 11 | 9, 10 | anbi12i 628 | . . . . . . . 8 ⊢ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧)) |
| 12 | epel 5522 | . . . . . . . 8 ⊢ (𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧) | |
| 13 | 8, 11, 12 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝑧 ∈ On → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
| 14 | 7, 13 | anim12i 613 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) |
| 15 | 14 | ralrimiva 3125 | . . . . 5 ⊢ (𝑥 ∈ On → ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) |
| 16 | 15 | ralrimivw 3129 | . . . 4 ⊢ (𝑥 ∈ On → ∀𝑦 ∈ On ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) |
| 17 | 2, 16 | mprgbir 3055 | . . 3 ⊢ E Po On |
| 18 | eloni 6321 | . . . . 5 ⊢ (𝑦 ∈ On → Ord 𝑦) | |
| 19 | ordtri3or 6343 | . . . . . 6 ⊢ ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
| 20 | biid 261 | . . . . . . 7 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
| 21 | epel 5522 | . . . . . . 7 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 22 | 9, 20, 21 | 3orbi123i 1156 | . . . . . 6 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
| 23 | 19, 22 | sylibr 234 | . . . . 5 ⊢ ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
| 24 | 3, 18, 23 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
| 25 | 24 | rgen2 3173 | . . 3 ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) |
| 26 | df-so 5528 | . . 3 ⊢ ( E Or On ↔ ( E Po On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) | |
| 27 | 17, 25, 26 | mpbir2an 711 | . 2 ⊢ E Or On |
| 28 | df-we 5574 | . 2 ⊢ ( E We On ↔ ( E Fr On ∧ E Or On)) | |
| 29 | 1, 27, 28 | mpbir2an 711 | 1 ⊢ E We On |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ w3o 1085 ∈ wcel 2113 ∀wral 3048 class class class wbr 5093 E cep 5518 Po wpo 5525 Or wor 5526 Fr wfr 5569 We wwe 5571 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 |
| This theorem is referenced by: ordon 7716 dford5 7723 omsinds 7823 onnseq 8270 dfrecs3 8298 tfr1ALT 8325 tfr2ALT 8326 tfr3ALT 8327 on2recsfn 8588 on2recsov 8589 on2ind 8590 on3ind 8591 ordunifi 9181 ordtypelem8 9418 oismo 9433 cantnfcl 9564 leweon 9909 r0weon 9910 ac10ct 9932 dfac12lem2 10043 cflim2 10161 cofsmo 10167 hsmexlem1 10324 smobeth 10484 gruina 10716 ltsopi 10786 onswe 28207 finminlem 36383 dnwech 43165 aomclem4 43174 onsupuni 43346 oninfint 43353 epsoon 43370 epirron 43371 oneptr 43372 oaun3lem1 43491 |
| Copyright terms: Public domain | W3C validator |