MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweon Structured version   Visualization version   GIF version

Theorem epweon 7762
Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. For a shorter proof requiring ax-un 7725, see epweonALT 7763. (Contributed by NM, 1-Nov-2003.) Avoid ax-un 7725. (Revised by BTernaryTau, 30-Nov-2024.)
Assertion
Ref Expression
epweon E We On

Proof of Theorem epweon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfr 6404 . 2 E Fr On
2 df-po 5589 . . . 4 ( E Po On ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
3 eloni 6375 . . . . . . . . 9 (𝑥 ∈ On → Ord 𝑥)
4 ordirr 6383 . . . . . . . . 9 (Ord 𝑥 → ¬ 𝑥𝑥)
53, 4syl 17 . . . . . . . 8 (𝑥 ∈ On → ¬ 𝑥𝑥)
6 epel 5584 . . . . . . . 8 (𝑥 E 𝑥𝑥𝑥)
75, 6sylnibr 329 . . . . . . 7 (𝑥 ∈ On → ¬ 𝑥 E 𝑥)
8 ontr1 6411 . . . . . . . 8 (𝑧 ∈ On → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
9 epel 5584 . . . . . . . . 9 (𝑥 E 𝑦𝑥𝑦)
10 epel 5584 . . . . . . . . 9 (𝑦 E 𝑧𝑦𝑧)
119, 10anbi12i 628 . . . . . . . 8 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
12 epel 5584 . . . . . . . 8 (𝑥 E 𝑧𝑥𝑧)
138, 11, 123imtr4g 296 . . . . . . 7 (𝑧 ∈ On → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
147, 13anim12i 614 . . . . . 6 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
1514ralrimiva 3147 . . . . 5 (𝑥 ∈ On → ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
1615ralrimivw 3151 . . . 4 (𝑥 ∈ On → ∀𝑦 ∈ On ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
172, 16mprgbir 3069 . . 3 E Po On
18 eloni 6375 . . . . 5 (𝑦 ∈ On → Ord 𝑦)
19 ordtri3or 6397 . . . . . 6 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
20 biid 261 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
21 epel 5584 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
229, 20, 213orbi123i 1157 . . . . . 6 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2319, 22sylibr 233 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
243, 18, 23syl2an 597 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
2524rgen2 3198 . . 3 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
26 df-so 5590 . . 3 ( E Or On ↔ ( E Po On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
2717, 25, 26mpbir2an 710 . 2 E Or On
28 df-we 5634 . 2 ( E We On ↔ ( E Fr On ∧ E Or On))
291, 27, 28mpbir2an 710 1 E We On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3o 1087  wcel 2107  wral 3062   class class class wbr 5149   E cep 5580   Po wpo 5587   Or wor 5588   Fr wfr 5629   We wwe 5631  Ord word 6364  Oncon0 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369
This theorem is referenced by:  ordon  7764  dford5  7771  omsinds  7876  omsindsOLD  7877  onnseq  8344  dfrecs3  8372  dfrecs3OLD  8373  tfr1ALT  8400  tfr2ALT  8401  tfr3ALT  8402  on2recsfn  8666  on2recsov  8667  on2ind  8668  on3ind  8669  ordunifi  9293  ordtypelem8  9520  oismo  9535  cantnfcl  9662  leweon  10006  r0weon  10007  ac10ct  10029  dfac12lem2  10139  cflim2  10258  cofsmo  10264  hsmexlem1  10421  smobeth  10581  gruina  10813  ltsopi  10883  finminlem  35251  dnwech  41838  aomclem4  41847  onsupuni  42026  oninfint  42033  epsoon  42050  epirron  42051  oneptr  42052  oaun3lem1  42172
  Copyright terms: Public domain W3C validator