MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweon Structured version   Visualization version   GIF version

Theorem epweon 7714
Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. For a shorter proof requiring ax-un 7677, see epweonALT 7715. (Contributed by NM, 1-Nov-2003.) Avoid ax-un 7677. (Revised by BTernaryTau, 30-Nov-2024.)
Assertion
Ref Expression
epweon E We On

Proof of Theorem epweon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfr 6361 . 2 E Fr On
2 df-po 5550 . . . 4 ( E Po On ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
3 eloni 6332 . . . . . . . . 9 (𝑥 ∈ On → Ord 𝑥)
4 ordirr 6340 . . . . . . . . 9 (Ord 𝑥 → ¬ 𝑥𝑥)
53, 4syl 17 . . . . . . . 8 (𝑥 ∈ On → ¬ 𝑥𝑥)
6 epel 5545 . . . . . . . 8 (𝑥 E 𝑥𝑥𝑥)
75, 6sylnibr 328 . . . . . . 7 (𝑥 ∈ On → ¬ 𝑥 E 𝑥)
8 ontr1 6368 . . . . . . . 8 (𝑧 ∈ On → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
9 epel 5545 . . . . . . . . 9 (𝑥 E 𝑦𝑥𝑦)
10 epel 5545 . . . . . . . . 9 (𝑦 E 𝑧𝑦𝑧)
119, 10anbi12i 627 . . . . . . . 8 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
12 epel 5545 . . . . . . . 8 (𝑥 E 𝑧𝑥𝑧)
138, 11, 123imtr4g 295 . . . . . . 7 (𝑧 ∈ On → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
147, 13anim12i 613 . . . . . 6 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
1514ralrimiva 3139 . . . . 5 (𝑥 ∈ On → ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
1615ralrimivw 3143 . . . 4 (𝑥 ∈ On → ∀𝑦 ∈ On ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
172, 16mprgbir 3067 . . 3 E Po On
18 eloni 6332 . . . . 5 (𝑦 ∈ On → Ord 𝑦)
19 ordtri3or 6354 . . . . . 6 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
20 biid 260 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
21 epel 5545 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
229, 20, 213orbi123i 1156 . . . . . 6 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2319, 22sylibr 233 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
243, 18, 23syl2an 596 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
2524rgen2 3190 . . 3 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
26 df-so 5551 . . 3 ( E Or On ↔ ( E Po On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
2717, 25, 26mpbir2an 709 . 2 E Or On
28 df-we 5595 . 2 ( E We On ↔ ( E Fr On ∧ E Or On))
291, 27, 28mpbir2an 709 1 E We On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3o 1086  wcel 2106  wral 3060   class class class wbr 5110   E cep 5541   Po wpo 5548   Or wor 5549   Fr wfr 5590   We wwe 5592  Ord word 6321  Oncon0 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-ord 6325  df-on 6326
This theorem is referenced by:  ordon  7716  dford5  7723  omsinds  7828  omsindsOLD  7829  onnseq  8295  dfrecs3  8323  dfrecs3OLD  8324  tfr1ALT  8351  tfr2ALT  8352  tfr3ALT  8353  on2recsfn  8618  on2recsov  8619  on2ind  8620  on3ind  8621  ordunifi  9244  ordtypelem8  9470  oismo  9485  cantnfcl  9612  leweon  9956  r0weon  9957  ac10ct  9979  dfac12lem2  10089  cflim2  10208  cofsmo  10214  hsmexlem1  10371  smobeth  10531  gruina  10763  ltsopi  10833  finminlem  34866  dnwech  41433  aomclem4  41442  onsupuni  41621  oninfint  41628  epsoon  41645  epirron  41646  oneptr  41647  oaun3lem1  41767
  Copyright terms: Public domain W3C validator