MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweon Structured version   Visualization version   GIF version

Theorem epweon 7248
Description: The membership relation well-orders the class of ordinal numbers. Proposition 4.8(g) of [Mendelson] p. 244. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
epweon E We On

Proof of Theorem epweon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfr 6006 . 2 E Fr On
2 eloni 5977 . . . 4 (𝑥 ∈ On → Ord 𝑥)
3 eloni 5977 . . . 4 (𝑦 ∈ On → Ord 𝑦)
4 ordtri3or 5999 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
5 epel 5260 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 biid 253 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
7 epel 5260 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
85, 6, 73orbi123i 1199 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
94, 8sylibr 226 . . . 4 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
102, 3, 9syl2an 589 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1110rgen2a 3186 . 2 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
12 dfwe2 7247 . 2 ( E We On ↔ ( E Fr On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
131, 11, 12mpbir2an 702 1 E We On
Colors of variables: wff setvar class
Syntax hints:  wa 386  w3o 1110  wcel 2164  wral 3117   class class class wbr 4875   E cep 5256   Fr wfr 5302   We wwe 5304  Ord word 5966  Oncon0 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-tr 4978  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-ord 5970  df-on 5971
This theorem is referenced by:  ordon  7249  omsinds  7350  onnseq  7712  dfrecs3  7740  tfr1ALT  7767  tfr2ALT  7768  tfr3ALT  7769  ordunifi  8485  ordtypelem8  8706  oismo  8721  cantnfcl  8848  leweon  9154  r0weon  9155  ac10ct  9177  dfac12lem2  9288  cflim2  9407  cofsmo  9413  hsmexlem1  9570  smobeth  9730  gruina  9962  ltsopi  10032  dford5  32148  finminlem  32846  dnwech  38460  aomclem4  38469
  Copyright terms: Public domain W3C validator