MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweon Structured version   Visualization version   GIF version

Theorem epweon 7769
Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. For a shorter proof requiring ax-un 7729, see epweonALT 7770. (Contributed by NM, 1-Nov-2003.) Avoid ax-un 7729. (Revised by BTernaryTau, 30-Nov-2024.)
Assertion
Ref Expression
epweon E We On

Proof of Theorem epweon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfr 6391 . 2 E Fr On
2 df-po 5561 . . . 4 ( E Po On ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
3 eloni 6362 . . . . . . . . 9 (𝑥 ∈ On → Ord 𝑥)
4 ordirr 6370 . . . . . . . . 9 (Ord 𝑥 → ¬ 𝑥𝑥)
53, 4syl 17 . . . . . . . 8 (𝑥 ∈ On → ¬ 𝑥𝑥)
6 epel 5556 . . . . . . . 8 (𝑥 E 𝑥𝑥𝑥)
75, 6sylnibr 329 . . . . . . 7 (𝑥 ∈ On → ¬ 𝑥 E 𝑥)
8 ontr1 6399 . . . . . . . 8 (𝑧 ∈ On → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
9 epel 5556 . . . . . . . . 9 (𝑥 E 𝑦𝑥𝑦)
10 epel 5556 . . . . . . . . 9 (𝑦 E 𝑧𝑦𝑧)
119, 10anbi12i 628 . . . . . . . 8 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
12 epel 5556 . . . . . . . 8 (𝑥 E 𝑧𝑥𝑧)
138, 11, 123imtr4g 296 . . . . . . 7 (𝑧 ∈ On → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
147, 13anim12i 613 . . . . . 6 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
1514ralrimiva 3132 . . . . 5 (𝑥 ∈ On → ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
1615ralrimivw 3136 . . . 4 (𝑥 ∈ On → ∀𝑦 ∈ On ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
172, 16mprgbir 3058 . . 3 E Po On
18 eloni 6362 . . . . 5 (𝑦 ∈ On → Ord 𝑦)
19 ordtri3or 6384 . . . . . 6 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
20 biid 261 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
21 epel 5556 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
229, 20, 213orbi123i 1156 . . . . . 6 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2319, 22sylibr 234 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
243, 18, 23syl2an 596 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
2524rgen2 3184 . . 3 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
26 df-so 5562 . . 3 ( E Or On ↔ ( E Po On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
2717, 25, 26mpbir2an 711 . 2 E Or On
28 df-we 5608 . 2 ( E We On ↔ ( E Fr On ∧ E Or On))
291, 27, 28mpbir2an 711 1 E We On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1085  wcel 2108  wral 3051   class class class wbr 5119   E cep 5552   Po wpo 5559   Or wor 5560   Fr wfr 5603   We wwe 5605  Ord word 6351  Oncon0 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356
This theorem is referenced by:  ordon  7771  dford5  7778  omsinds  7882  onnseq  8358  dfrecs3  8386  dfrecs3OLD  8387  tfr1ALT  8414  tfr2ALT  8415  tfr3ALT  8416  on2recsfn  8679  on2recsov  8680  on2ind  8681  on3ind  8682  ordunifi  9298  ordtypelem8  9539  oismo  9554  cantnfcl  9681  leweon  10025  r0weon  10026  ac10ct  10048  dfac12lem2  10159  cflim2  10277  cofsmo  10283  hsmexlem1  10440  smobeth  10600  gruina  10832  ltsopi  10902  onswe  28222  finminlem  36336  dnwech  43072  aomclem4  43081  onsupuni  43253  oninfint  43260  epsoon  43277  epirron  43278  oneptr  43279  oaun3lem1  43398
  Copyright terms: Public domain W3C validator