| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epweon | Structured version Visualization version GIF version | ||
| Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. For a shorter proof requiring ax-un 7714, see epweonALT 7755. (Contributed by NM, 1-Nov-2003.) Avoid ax-un 7714. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| epweon | ⊢ E We On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfr 6374 | . 2 ⊢ E Fr On | |
| 2 | df-po 5549 | . . . 4 ⊢ ( E Po On ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) | |
| 3 | eloni 6345 | . . . . . . . . 9 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 4 | ordirr 6353 | . . . . . . . . 9 ⊢ (Ord 𝑥 → ¬ 𝑥 ∈ 𝑥) | |
| 5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ On → ¬ 𝑥 ∈ 𝑥) |
| 6 | epel 5544 | . . . . . . . 8 ⊢ (𝑥 E 𝑥 ↔ 𝑥 ∈ 𝑥) | |
| 7 | 5, 6 | sylnibr 329 | . . . . . . 7 ⊢ (𝑥 ∈ On → ¬ 𝑥 E 𝑥) |
| 8 | ontr1 6382 | . . . . . . . 8 ⊢ (𝑧 ∈ On → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧)) | |
| 9 | epel 5544 | . . . . . . . . 9 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 10 | epel 5544 | . . . . . . . . 9 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
| 11 | 9, 10 | anbi12i 628 | . . . . . . . 8 ⊢ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧)) |
| 12 | epel 5544 | . . . . . . . 8 ⊢ (𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧) | |
| 13 | 8, 11, 12 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝑧 ∈ On → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
| 14 | 7, 13 | anim12i 613 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) |
| 15 | 14 | ralrimiva 3126 | . . . . 5 ⊢ (𝑥 ∈ On → ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) |
| 16 | 15 | ralrimivw 3130 | . . . 4 ⊢ (𝑥 ∈ On → ∀𝑦 ∈ On ∀𝑧 ∈ On (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) |
| 17 | 2, 16 | mprgbir 3052 | . . 3 ⊢ E Po On |
| 18 | eloni 6345 | . . . . 5 ⊢ (𝑦 ∈ On → Ord 𝑦) | |
| 19 | ordtri3or 6367 | . . . . . 6 ⊢ ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
| 20 | biid 261 | . . . . . . 7 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
| 21 | epel 5544 | . . . . . . 7 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 22 | 9, 20, 21 | 3orbi123i 1156 | . . . . . 6 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
| 23 | 19, 22 | sylibr 234 | . . . . 5 ⊢ ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
| 24 | 3, 18, 23 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
| 25 | 24 | rgen2 3178 | . . 3 ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) |
| 26 | df-so 5550 | . . 3 ⊢ ( E Or On ↔ ( E Po On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) | |
| 27 | 17, 25, 26 | mpbir2an 711 | . 2 ⊢ E Or On |
| 28 | df-we 5596 | . 2 ⊢ ( E We On ↔ ( E Fr On ∧ E Or On)) | |
| 29 | 1, 27, 28 | mpbir2an 711 | 1 ⊢ E We On |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ w3o 1085 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 E cep 5540 Po wpo 5547 Or wor 5548 Fr wfr 5591 We wwe 5593 Ord word 6334 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: ordon 7756 dford5 7763 omsinds 7866 onnseq 8316 dfrecs3 8344 tfr1ALT 8371 tfr2ALT 8372 tfr3ALT 8373 on2recsfn 8634 on2recsov 8635 on2ind 8636 on3ind 8637 ordunifi 9244 ordtypelem8 9485 oismo 9500 cantnfcl 9627 leweon 9971 r0weon 9972 ac10ct 9994 dfac12lem2 10105 cflim2 10223 cofsmo 10229 hsmexlem1 10386 smobeth 10546 gruina 10778 ltsopi 10848 onswe 28177 finminlem 36313 dnwech 43044 aomclem4 43053 onsupuni 43225 oninfint 43232 epsoon 43249 epirron 43250 oneptr 43251 oaun3lem1 43370 |
| Copyright terms: Public domain | W3C validator |