MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweon Structured version   Visualization version   GIF version

Theorem epweon 7243
Description: The membership relation well-orders the class of ordinal numbers. Proposition 4.8(g) of [Mendelson] p. 244. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
epweon E We On

Proof of Theorem epweon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfr 6002 . 2 E Fr On
2 eloni 5973 . . . 4 (𝑥 ∈ On → Ord 𝑥)
3 eloni 5973 . . . 4 (𝑦 ∈ On → Ord 𝑦)
4 ordtri3or 5995 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
5 epel 5258 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 biid 253 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
7 epel 5258 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
85, 6, 73orbi123i 1199 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
94, 8sylibr 226 . . . 4 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
102, 3, 9syl2an 589 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1110rgen2a 3186 . 2 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
12 dfwe2 7242 . 2 ( E We On ↔ ( E Fr On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
131, 11, 12mpbir2an 702 1 E We On
Colors of variables: wff setvar class
Syntax hints:  wa 386  w3o 1110  wcel 2164  wral 3117   class class class wbr 4873   E cep 5254   Fr wfr 5298   We wwe 5300  Ord word 5962  Oncon0 5963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-tr 4976  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-ord 5966  df-on 5967
This theorem is referenced by:  ordon  7244  omsinds  7345  onnseq  7707  dfrecs3  7735  tfr1ALT  7762  tfr2ALT  7763  tfr3ALT  7764  ordunifi  8479  ordtypelem8  8699  oismo  8714  cantnfcl  8841  leweon  9147  r0weon  9148  ac10ct  9170  dfac12lem2  9281  cflim2  9400  cofsmo  9406  hsmexlem1  9563  smobeth  9723  gruina  9955  ltsopi  10025  dford5  32141  finminlem  32840  dnwech  38454  aomclem4  38463
  Copyright terms: Public domain W3C validator