MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwe Structured version   Visualization version   GIF version

Theorem nfwe 5664
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nfwe 𝑥 𝑅 We 𝐴

Proof of Theorem nfwe
StepHypRef Expression
1 df-we 5643 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
2 nffr.r . . . 4 𝑥𝑅
3 nffr.a . . . 4 𝑥𝐴
42, 3nffr 5662 . . 3 𝑥 𝑅 Fr 𝐴
52, 3nfso 5604 . . 3 𝑥 𝑅 Or 𝐴
64, 5nfan 1897 . 2 𝑥(𝑅 Fr 𝐴𝑅 Or 𝐴)
71, 6nfxfr 1850 1 𝑥 𝑅 We 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1780  wnfc 2888   Or wor 5596   Fr wfr 5638   We wwe 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-po 5597  df-so 5598  df-fr 5641  df-we 5643
This theorem is referenced by:  nfoi  9552  aomclem6  43048
  Copyright terms: Public domain W3C validator