MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwe Structured version   Visualization version   GIF version

Theorem nfwe 5626
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nfwe 𝑥 𝑅 We 𝐴

Proof of Theorem nfwe
StepHypRef Expression
1 df-we 5605 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
2 nffr.r . . . 4 𝑥𝑅
3 nffr.a . . . 4 𝑥𝐴
42, 3nffr 5624 . . 3 𝑥 𝑅 Fr 𝐴
52, 3nfso 5565 . . 3 𝑥 𝑅 Or 𝐴
64, 5nfan 1898 . 2 𝑥(𝑅 Fr 𝐴𝑅 Or 𝐴)
71, 6nfxfr 1852 1 𝑥 𝑅 We 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1782  wnfc 2882   Or wor 5557   Fr wfr 5600   We wwe 5602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5117  df-po 5558  df-so 5559  df-fr 5603  df-we 5605
This theorem is referenced by:  nfoi  9520  aomclem6  43008
  Copyright terms: Public domain W3C validator