MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwe Structured version   Visualization version   GIF version

Theorem nfwe 5586
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nfwe 𝑥 𝑅 We 𝐴

Proof of Theorem nfwe
StepHypRef Expression
1 df-we 5566 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
2 nffr.r . . . 4 𝑥𝑅
3 nffr.a . . . 4 𝑥𝐴
42, 3nffr 5584 . . 3 𝑥 𝑅 Fr 𝐴
52, 3nfso 5526 . . 3 𝑥 𝑅 Or 𝐴
64, 5nfan 1900 . 2 𝑥(𝑅 Fr 𝐴𝑅 Or 𝐴)
71, 6nfxfr 1854 1 𝑥 𝑅 We 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1784  wnfc 2879   Or wor 5518   Fr wfr 5561   We wwe 5563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-po 5519  df-so 5520  df-fr 5564  df-we 5566
This theorem is referenced by:  nfoi  9395  aomclem6  43092
  Copyright terms: Public domain W3C validator