Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfwe | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | ⊢ Ⅎ𝑥𝑅 |
nffr.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfwe | ⊢ Ⅎ𝑥 𝑅 We 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5537 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | nffr.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
3 | nffr.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffr 5554 | . . 3 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
5 | 2, 3 | nfso 5500 | . . 3 ⊢ Ⅎ𝑥 𝑅 Or 𝐴 |
6 | 4, 5 | nfan 1903 | . 2 ⊢ Ⅎ𝑥(𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
7 | 1, 6 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥 𝑅 We 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 Ⅎwnf 1787 Ⅎwnfc 2886 Or wor 5493 Fr wfr 5532 We wwe 5534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 |
This theorem is referenced by: nfoi 9203 aomclem6 40800 |
Copyright terms: Public domain | W3C validator |