MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwe Structured version   Visualization version   GIF version

Theorem nfwe 5419
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nfwe 𝑥 𝑅 We 𝐴

Proof of Theorem nfwe
StepHypRef Expression
1 df-we 5404 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
2 nffr.r . . . 4 𝑥𝑅
3 nffr.a . . . 4 𝑥𝐴
42, 3nffr 5417 . . 3 𝑥 𝑅 Fr 𝐴
52, 3nfso 5368 . . 3 𝑥 𝑅 Or 𝐴
64, 5nfan 1881 . 2 𝑥(𝑅 Fr 𝐴𝑅 Or 𝐴)
71, 6nfxfr 1834 1 𝑥 𝑅 We 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 396  wnf 1765  wnfc 2933   Or wor 5361   Fr wfr 5399   We wwe 5401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-br 4963  df-po 5362  df-so 5363  df-fr 5402  df-we 5404
This theorem is referenced by:  nfoi  8824  aomclem6  39144
  Copyright terms: Public domain W3C validator