| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfwe | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffr.r | ⊢ Ⅎ𝑥𝑅 |
| nffr.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfwe | ⊢ Ⅎ𝑥 𝑅 We 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5566 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | nffr.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 3 | nffr.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nffr 5584 | . . 3 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
| 5 | 2, 3 | nfso 5526 | . . 3 ⊢ Ⅎ𝑥 𝑅 Or 𝐴 |
| 6 | 4, 5 | nfan 1900 | . 2 ⊢ Ⅎ𝑥(𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
| 7 | 1, 6 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝑅 We 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1784 Ⅎwnfc 2879 Or wor 5518 Fr wfr 5561 We wwe 5563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 |
| This theorem is referenced by: nfoi 9395 aomclem6 43092 |
| Copyright terms: Public domain | W3C validator |