| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfwe | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffr.r | ⊢ Ⅎ𝑥𝑅 |
| nffr.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfwe | ⊢ Ⅎ𝑥 𝑅 We 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5605 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | nffr.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 3 | nffr.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nffr 5624 | . . 3 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
| 5 | 2, 3 | nfso 5565 | . . 3 ⊢ Ⅎ𝑥 𝑅 Or 𝐴 |
| 6 | 4, 5 | nfan 1898 | . 2 ⊢ Ⅎ𝑥(𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
| 7 | 1, 6 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥 𝑅 We 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1782 Ⅎwnfc 2882 Or wor 5557 Fr wfr 5600 We wwe 5602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 |
| This theorem is referenced by: nfoi 9520 aomclem6 43008 |
| Copyright terms: Public domain | W3C validator |