![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfwe | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | ⊢ Ⅎ𝑥𝑅 |
nffr.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfwe | ⊢ Ⅎ𝑥 𝑅 We 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5404 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | nffr.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
3 | nffr.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffr 5417 | . . 3 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
5 | 2, 3 | nfso 5368 | . . 3 ⊢ Ⅎ𝑥 𝑅 Or 𝐴 |
6 | 4, 5 | nfan 1881 | . 2 ⊢ Ⅎ𝑥(𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
7 | 1, 6 | nfxfr 1834 | 1 ⊢ Ⅎ𝑥 𝑅 We 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 Ⅎwnf 1765 Ⅎwnfc 2933 Or wor 5361 Fr wfr 5399 We wwe 5401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 |
This theorem is referenced by: nfoi 8824 aomclem6 39144 |
Copyright terms: Public domain | W3C validator |