MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weinxp Structured version   Visualization version   GIF version

Theorem weinxp 5706
Description: Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997.) (Revised by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
weinxp (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)

Proof of Theorem weinxp
StepHypRef Expression
1 frinxp 5704 . . 3 (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴)
2 soinxp 5703 . . 3 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
31, 2anbi12i 628 . 2 ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴))
4 df-we 5576 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5576 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴))
63, 4, 53bitr4i 303 1 (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  cin 3898   Or wor 5528   Fr wfr 5571   We wwe 5573   × cxp 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627
This theorem is referenced by:  wemapwe  9597  infxpenlem  9914  dfac8b  9932  ac10ct  9935  canthwelem  10551  ltbwe  21989  vitali  25551  fin2so  37657  dnwech  43155  aomclem5  43165
  Copyright terms: Public domain W3C validator