| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weinxp | Structured version Visualization version GIF version | ||
| Description: Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997.) (Revised by Mario Carneiro, 10-Jul-2014.) |
| Ref | Expression |
|---|---|
| weinxp | ⊢ (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frinxp 5742 | . . 3 ⊢ (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴) | |
| 2 | soinxp 5741 | . . 3 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)) |
| 4 | df-we 5613 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 5 | df-we 5613 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∩ cin 3930 Or wor 5565 Fr wfr 5608 We wwe 5610 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 |
| This theorem is referenced by: wemapwe 9716 infxpenlem 10032 dfac8b 10050 ac10ct 10053 canthwelem 10669 ltbwe 22007 vitali 25571 fin2so 37636 dnwech 43039 aomclem5 43049 |
| Copyright terms: Public domain | W3C validator |