Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > weinxp | Structured version Visualization version GIF version |
Description: Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997.) (Revised by Mario Carneiro, 10-Jul-2014.) |
Ref | Expression |
---|---|
weinxp | ⊢ (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frinxp 5660 | . . 3 ⊢ (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴) | |
2 | soinxp 5659 | . . 3 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴) | |
3 | 1, 2 | anbi12i 626 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)) |
4 | df-we 5537 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
5 | df-we 5537 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)) | |
6 | 3, 4, 5 | 3bitr4i 302 | 1 ⊢ (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∩ cin 3882 Or wor 5493 Fr wfr 5532 We wwe 5534 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 |
This theorem is referenced by: wemapwe 9385 infxpenlem 9700 dfac8b 9718 ac10ct 9721 canthwelem 10337 ltbwe 21155 vitali 24682 fin2so 35691 dnwech 40789 aomclem5 40799 |
Copyright terms: Public domain | W3C validator |