MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weinxp Structured version   Visualization version   GIF version

Theorem weinxp 5608
Description: Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997.) (Revised by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
weinxp (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)

Proof of Theorem weinxp
StepHypRef Expression
1 frinxp 5606 . . 3 (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴)
2 soinxp 5605 . . 3 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
31, 2anbi12i 630 . 2 ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴))
4 df-we 5486 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5486 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴))
63, 4, 53bitr4i 306 1 (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  cin 3843   Or wor 5442   Fr wfr 5481   We wwe 5483   × cxp 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ral 3059  df-rex 3060  df-v 3401  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-br 5032  df-opab 5094  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532
This theorem is referenced by:  wemapwe  9236  infxpenlem  9516  dfac8b  9534  ac10ct  9537  canthwelem  10153  ltbwe  20858  vitali  24368  fin2so  35410  dnwech  40468  aomclem5  40478
  Copyright terms: Public domain W3C validator