MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weinxp Structured version   Visualization version   GIF version

Theorem weinxp 5753
Description: Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997.) (Revised by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
weinxp (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)

Proof of Theorem weinxp
StepHypRef Expression
1 frinxp 5751 . . 3 (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴)
2 soinxp 5750 . . 3 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
31, 2anbi12i 626 . 2 ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴))
4 df-we 5626 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5626 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴))
63, 4, 53bitr4i 303 1 (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  cin 3942   Or wor 5580   Fr wfr 5621   We wwe 5623   × cxp 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675
This theorem is referenced by:  wemapwe  9691  infxpenlem  10007  dfac8b  10025  ac10ct  10028  canthwelem  10644  ltbwe  21937  vitali  25493  fin2so  36986  dnwech  42349  aomclem5  42359
  Copyright terms: Public domain W3C validator