![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version |
Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5654 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5606 Fr wfr 5649 We wwe 5651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-we 5654 |
This theorem is referenced by: wecmpep 5692 wetrep 5693 wereu 5696 wereu2 5697 tz6.26 6379 wfi 6382 wfisg 6385 wfis2fg 6388 weniso 7390 wexp 8171 wfrlem10OLD 8374 wfrfun 8388 wfrresex 8389 wfr2a 8390 wfr1 8391 on2recsfn 8723 on2recsov 8724 on2ind 8725 on3ind 8726 ordunifi 9354 ordtypelem7 9593 ordtypelem8 9594 hartogslem1 9611 wofib 9614 wemapso 9620 oemapso 9751 cantnf 9762 ween 10104 cflim2 10332 fin23lem27 10397 zorn2lem1 10565 zorn2lem4 10568 fpwwe2lem11 10710 fpwwe2lem12 10711 fpwwe2 10712 canth4 10716 canthwelem 10719 pwfseqlem4 10731 ltsopi 10957 wzel 35788 wsuccl 35791 wsuclb 35792 weiunfrlem 36430 weiunpo 36431 weiunso 36432 weiunwe 36435 welb 37696 wepwso 43000 fnwe2lem3 43009 onsupuni 43190 oninfint 43197 epsoon 43214 epirron 43215 oneptr 43216 wessf1ornlem 45092 |
Copyright terms: Public domain | W3C validator |