| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version | ||
| Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5613 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5565 Fr wfr 5608 We wwe 5610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5613 |
| This theorem is referenced by: wecmpep 5651 wetrep 5652 wereu 5655 wereu2 5656 tz6.26 6341 wfi 6344 wfisg 6347 wfis2fg 6350 weniso 7352 wexp 8134 wfrlem10OLD 8337 wfrfun 8351 wfrresex 8352 wfr2a 8353 wfr1 8354 on2recsfn 8684 on2recsov 8685 on2ind 8686 on3ind 8687 ordunifi 9303 ordtypelem7 9543 ordtypelem8 9544 hartogslem1 9561 wofib 9564 wemapso 9570 oemapso 9701 cantnf 9712 ween 10054 cflim2 10282 fin23lem27 10347 zorn2lem1 10515 zorn2lem4 10518 fpwwe2lem11 10660 fpwwe2lem12 10661 fpwwe2 10662 canth4 10666 canthwelem 10669 pwfseqlem4 10681 ltsopi 10907 wzel 35847 wsuccl 35850 wsuclb 35851 weiunfrlem 36487 weiunpo 36488 weiunso 36489 weiunwe 36492 welb 37765 wepwso 43034 fnwe2lem3 43043 onsupuni 43220 oninfint 43227 epsoon 43244 epirron 43245 oneptr 43246 wessf1ornlem 45176 |
| Copyright terms: Public domain | W3C validator |