| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version | ||
| Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5569 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5521 Fr wfr 5564 We wwe 5566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5569 |
| This theorem is referenced by: wecmpep 5606 wetrep 5607 wereu 5610 wereu2 5611 tz6.26 6294 wfi 6296 wfisg 6298 wfis2fg 6300 weniso 7288 wexp 8060 wfrfun 8253 wfrresex 8254 wfr2a 8255 wfr1 8256 on2recsfn 8582 on2recsov 8583 on2ind 8584 on3ind 8585 ordunifi 9174 ordtypelem7 9410 ordtypelem8 9411 hartogslem1 9428 wofib 9431 wemapso 9437 oemapso 9572 cantnf 9583 ween 9926 cflim2 10154 fin23lem27 10219 zorn2lem1 10387 zorn2lem4 10390 fpwwe2lem11 10532 fpwwe2lem12 10533 fpwwe2 10534 canth4 10538 canthwelem 10541 pwfseqlem4 10553 ltsopi 10779 wzel 35866 wsuccl 35869 wsuclb 35870 weiunfrlem 36508 weiunpo 36509 weiunso 36510 weiunwe 36513 welb 37786 wepwso 43146 fnwe2lem3 43155 onsupuni 43332 oninfint 43339 epsoon 43356 epirron 43357 oneptr 43358 wessf1ornlem 45292 |
| Copyright terms: Public domain | W3C validator |