| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version | ||
| Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5586 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5538 Fr wfr 5581 We wwe 5583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5586 |
| This theorem is referenced by: wecmpep 5623 wetrep 5624 wereu 5627 wereu2 5628 tz6.26 6308 wfi 6310 wfisg 6312 wfis2fg 6314 weniso 7311 wexp 8086 wfrfun 8279 wfrresex 8280 wfr2a 8281 wfr1 8282 on2recsfn 8608 on2recsov 8609 on2ind 8610 on3ind 8611 ordunifi 9213 ordtypelem7 9453 ordtypelem8 9454 hartogslem1 9471 wofib 9474 wemapso 9480 oemapso 9611 cantnf 9622 ween 9964 cflim2 10192 fin23lem27 10257 zorn2lem1 10425 zorn2lem4 10428 fpwwe2lem11 10570 fpwwe2lem12 10571 fpwwe2 10572 canth4 10576 canthwelem 10579 pwfseqlem4 10591 ltsopi 10817 wzel 35785 wsuccl 35788 wsuclb 35789 weiunfrlem 36425 weiunpo 36426 weiunso 36427 weiunwe 36430 welb 37703 wepwso 43005 fnwe2lem3 43014 onsupuni 43191 oninfint 43198 epsoon 43215 epirron 43216 oneptr 43217 wessf1ornlem 45152 |
| Copyright terms: Public domain | W3C validator |