Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version |
Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5571 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5525 Fr wfr 5566 We wwe 5568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-we 5571 |
This theorem is referenced by: wecmpep 5606 wetrep 5607 wereu 5610 wereu2 5611 tz6.26 6280 wfi 6283 wfisg 6286 wfis2fg 6289 weniso 7275 wexp 8030 wfrlem10OLD 8211 wfrfun 8225 wfrresex 8226 wfr2a 8227 wfr1 8228 ordunifi 9150 ordtypelem7 9373 ordtypelem8 9374 hartogslem1 9391 wofib 9394 wemapso 9400 oemapso 9531 cantnf 9542 ween 9884 cflim2 10112 fin23lem27 10177 zorn2lem1 10345 zorn2lem4 10348 fpwwe2lem11 10490 fpwwe2lem12 10491 fpwwe2 10492 canth4 10496 canthwelem 10499 pwfseqlem4 10511 ltsopi 10737 wzel 34041 wsuccl 34044 wsuclb 34045 on2recsfn 34049 on2recsov 34050 on2ind 34051 on3ind 34052 welb 35992 wepwso 41119 fnwe2lem3 41128 wessf1ornlem 43038 |
Copyright terms: Public domain | W3C validator |