![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version |
Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5642 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5595 Fr wfr 5637 We wwe 5639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-we 5642 |
This theorem is referenced by: wecmpep 5680 wetrep 5681 wereu 5684 wereu2 5685 tz6.26 6369 wfi 6372 wfisg 6375 wfis2fg 6378 weniso 7373 wexp 8153 wfrlem10OLD 8356 wfrfun 8370 wfrresex 8371 wfr2a 8372 wfr1 8373 on2recsfn 8703 on2recsov 8704 on2ind 8705 on3ind 8706 ordunifi 9323 ordtypelem7 9561 ordtypelem8 9562 hartogslem1 9579 wofib 9582 wemapso 9588 oemapso 9719 cantnf 9730 ween 10072 cflim2 10300 fin23lem27 10365 zorn2lem1 10533 zorn2lem4 10536 fpwwe2lem11 10678 fpwwe2lem12 10679 fpwwe2 10680 canth4 10684 canthwelem 10687 pwfseqlem4 10699 ltsopi 10925 wzel 35805 wsuccl 35808 wsuclb 35809 weiunfrlem 36446 weiunpo 36447 weiunso 36448 weiunwe 36451 welb 37722 wepwso 43031 fnwe2lem3 43040 onsupuni 43217 oninfint 43224 epsoon 43241 epirron 43242 oneptr 43243 wessf1ornlem 45127 |
Copyright terms: Public domain | W3C validator |