Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version |
Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5557 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simprbi 498 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5513 Fr wfr 5552 We wwe 5554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-we 5557 |
This theorem is referenced by: wecmpep 5592 wetrep 5593 wereu 5596 wereu2 5597 tz6.26 6265 wfi 6268 wfisg 6271 wfis2fg 6274 weniso 7257 wexp 8002 wfrlem10OLD 8180 wfrfun 8194 wfrresex 8195 wfr2a 8196 wfr1 8197 ordunifi 9108 ordtypelem7 9327 ordtypelem8 9328 hartogslem1 9345 wofib 9348 wemapso 9354 oemapso 9484 cantnf 9495 ween 9837 cflim2 10065 fin23lem27 10130 zorn2lem1 10298 zorn2lem4 10301 fpwwe2lem11 10443 fpwwe2lem12 10444 fpwwe2 10445 canth4 10449 canthwelem 10452 pwfseqlem4 10464 ltsopi 10690 wzel 33863 wsuccl 33866 wsuclb 33867 on2recsfn 33871 on2recsov 33872 on2ind 33873 on3ind 33874 welb 35938 wepwso 40906 fnwe2lem3 40915 wessf1ornlem 42766 |
Copyright terms: Public domain | W3C validator |