Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version |
Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5545 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5501 Fr wfr 5540 We wwe 5542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-we 5545 |
This theorem is referenced by: wecmpep 5580 wetrep 5581 wereu 5584 wereu2 5585 tz6.26 6247 wfi 6250 wfisg 6253 wfis2fg 6256 weniso 7218 wexp 7955 wfrlem10OLD 8133 wfrfun 8147 wfrresex 8148 wfr2a 8149 wfr1 8150 ordunifi 9025 ordtypelem7 9244 ordtypelem8 9245 hartogslem1 9262 wofib 9265 wemapso 9271 oemapso 9401 cantnf 9412 ween 9775 cflim2 10003 fin23lem27 10068 zorn2lem1 10236 zorn2lem4 10239 fpwwe2lem11 10381 fpwwe2lem12 10382 fpwwe2 10383 canth4 10387 canthwelem 10390 pwfseqlem4 10402 ltsopi 10628 wzel 33797 wsuccl 33800 wsuclb 33801 on2recsfn 33805 on2recsov 33806 on2ind 33807 on3ind 33808 welb 35873 wepwso 40848 fnwe2lem3 40857 wessf1ornlem 42675 |
Copyright terms: Public domain | W3C validator |