| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version | ||
| Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5593 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5545 Fr wfr 5588 We wwe 5590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5593 |
| This theorem is referenced by: wecmpep 5630 wetrep 5631 wereu 5634 wereu2 5635 tz6.26 6320 wfi 6322 wfisg 6324 wfis2fg 6326 weniso 7329 wexp 8109 wfrfun 8302 wfrresex 8303 wfr2a 8304 wfr1 8305 on2recsfn 8631 on2recsov 8632 on2ind 8633 on3ind 8634 ordunifi 9237 ordtypelem7 9477 ordtypelem8 9478 hartogslem1 9495 wofib 9498 wemapso 9504 oemapso 9635 cantnf 9646 ween 9988 cflim2 10216 fin23lem27 10281 zorn2lem1 10449 zorn2lem4 10452 fpwwe2lem11 10594 fpwwe2lem12 10595 fpwwe2 10596 canth4 10600 canthwelem 10603 pwfseqlem4 10615 ltsopi 10841 wzel 35812 wsuccl 35815 wsuclb 35816 weiunfrlem 36452 weiunpo 36453 weiunso 36454 weiunwe 36457 welb 37730 wepwso 43032 fnwe2lem3 43041 onsupuni 43218 oninfint 43225 epsoon 43242 epirron 43243 oneptr 43244 wessf1ornlem 45179 |
| Copyright terms: Public domain | W3C validator |