| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version | ||
| Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we 5596 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Or wor 5548 Fr wfr 5591 We wwe 5593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-we 5596 |
| This theorem is referenced by: wecmpep 5633 wetrep 5634 wereu 5637 wereu2 5638 tz6.26 6323 wfi 6325 wfisg 6327 wfis2fg 6329 weniso 7332 wexp 8112 wfrfun 8305 wfrresex 8306 wfr2a 8307 wfr1 8308 on2recsfn 8634 on2recsov 8635 on2ind 8636 on3ind 8637 ordunifi 9244 ordtypelem7 9484 ordtypelem8 9485 hartogslem1 9502 wofib 9505 wemapso 9511 oemapso 9642 cantnf 9653 ween 9995 cflim2 10223 fin23lem27 10288 zorn2lem1 10456 zorn2lem4 10459 fpwwe2lem11 10601 fpwwe2lem12 10602 fpwwe2 10603 canth4 10607 canthwelem 10610 pwfseqlem4 10622 ltsopi 10848 wzel 35819 wsuccl 35822 wsuclb 35823 weiunfrlem 36459 weiunpo 36460 weiunso 36461 weiunwe 36464 welb 37737 wepwso 43039 fnwe2lem3 43048 onsupuni 43225 oninfint 43232 epsoon 43249 epirron 43250 oneptr 43251 wessf1ornlem 45186 |
| Copyright terms: Public domain | W3C validator |