MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wesn Structured version   Visualization version   GIF version

Theorem wesn 5755
Description: Well-ordering of a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
wesn (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem wesn
StepHypRef Expression
1 frsn 5754 . . 3 (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
2 sosn 5753 . . 3 (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴))
31, 2anbi12d 630 . 2 (Rel 𝑅 → ((𝑅 Fr {𝐴} ∧ 𝑅 Or {𝐴}) ↔ (¬ 𝐴𝑅𝐴 ∧ ¬ 𝐴𝑅𝐴)))
4 df-we 5624 . 2 (𝑅 We {𝐴} ↔ (𝑅 Fr {𝐴} ∧ 𝑅 Or {𝐴}))
5 pm4.24 563 . 2 𝐴𝑅𝐴 ↔ (¬ 𝐴𝑅𝐴 ∧ ¬ 𝐴𝑅𝐴))
63, 4, 53bitr4g 314 1 (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  {csn 4621   class class class wbr 5139   Or wor 5578   Fr wfr 5619   We wwe 5621  Rel wrel 5672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674
This theorem is referenced by:  0we1  8502  canthwe  10643
  Copyright terms: Public domain W3C validator