![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wesn | Structured version Visualization version GIF version |
Description: Well-ordering of a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
wesn | ⊢ (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsn 5759 | . . 3 ⊢ (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | |
2 | sosn 5758 | . . 3 ⊢ (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | |
3 | 1, 2 | anbi12d 631 | . 2 ⊢ (Rel 𝑅 → ((𝑅 Fr {𝐴} ∧ 𝑅 Or {𝐴}) ↔ (¬ 𝐴𝑅𝐴 ∧ ¬ 𝐴𝑅𝐴))) |
4 | df-we 5629 | . 2 ⊢ (𝑅 We {𝐴} ↔ (𝑅 Fr {𝐴} ∧ 𝑅 Or {𝐴})) | |
5 | pm4.24 563 | . 2 ⊢ (¬ 𝐴𝑅𝐴 ↔ (¬ 𝐴𝑅𝐴 ∧ ¬ 𝐴𝑅𝐴)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 {csn 4624 class class class wbr 5142 Or wor 5583 Fr wfr 5624 We wwe 5626 Rel wrel 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 |
This theorem is referenced by: 0we1 8520 canthwe 10668 |
Copyright terms: Public domain | W3C validator |