| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wesn | Structured version Visualization version GIF version | ||
| Description: Well-ordering of a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| wesn | ⊢ (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsn 5726 | . . 3 ⊢ (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | |
| 2 | sosn 5725 | . . 3 ⊢ (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (Rel 𝑅 → ((𝑅 Fr {𝐴} ∧ 𝑅 Or {𝐴}) ↔ (¬ 𝐴𝑅𝐴 ∧ ¬ 𝐴𝑅𝐴))) |
| 4 | df-we 5593 | . 2 ⊢ (𝑅 We {𝐴} ↔ (𝑅 Fr {𝐴} ∧ 𝑅 Or {𝐴})) | |
| 5 | pm4.24 563 | . 2 ⊢ (¬ 𝐴𝑅𝐴 ↔ (¬ 𝐴𝑅𝐴 ∧ ¬ 𝐴𝑅𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 {csn 4589 class class class wbr 5107 Or wor 5545 Fr wfr 5588 We wwe 5590 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: 0we1 8470 canthwe 10604 |
| Copyright terms: Public domain | W3C validator |