MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wesn Structured version   Visualization version   GIF version

Theorem wesn 5666
Description: Well-ordering of a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
wesn (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem wesn
StepHypRef Expression
1 frsn 5665 . . 3 (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
2 sosn 5664 . . 3 (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴))
31, 2anbi12d 630 . 2 (Rel 𝑅 → ((𝑅 Fr {𝐴} ∧ 𝑅 Or {𝐴}) ↔ (¬ 𝐴𝑅𝐴 ∧ ¬ 𝐴𝑅𝐴)))
4 df-we 5537 . 2 (𝑅 We {𝐴} ↔ (𝑅 Fr {𝐴} ∧ 𝑅 Or {𝐴}))
5 pm4.24 563 . 2 𝐴𝑅𝐴 ↔ (¬ 𝐴𝑅𝐴 ∧ ¬ 𝐴𝑅𝐴))
63, 4, 53bitr4g 313 1 (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  {csn 4558   class class class wbr 5070   Or wor 5493   Fr wfr 5532   We wwe 5534  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587
This theorem is referenced by:  0we1  8298  canthwe  10338
  Copyright terms: Public domain W3C validator