| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wesn | Structured version Visualization version GIF version | ||
| Description: Well-ordering of a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| wesn | ⊢ (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsn 5702 | . . 3 ⊢ (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | |
| 2 | sosn 5701 | . . 3 ⊢ (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (Rel 𝑅 → ((𝑅 Fr {𝐴} ∧ 𝑅 Or {𝐴}) ↔ (¬ 𝐴𝑅𝐴 ∧ ¬ 𝐴𝑅𝐴))) |
| 4 | df-we 5569 | . 2 ⊢ (𝑅 We {𝐴} ↔ (𝑅 Fr {𝐴} ∧ 𝑅 Or {𝐴})) | |
| 5 | pm4.24 563 | . 2 ⊢ (¬ 𝐴𝑅𝐴 ↔ (¬ 𝐴𝑅𝐴 ∧ ¬ 𝐴𝑅𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 {csn 4573 class class class wbr 5089 Or wor 5521 Fr wfr 5564 We wwe 5566 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: 0we1 8421 canthwe 10542 |
| Copyright terms: Public domain | W3C validator |