| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfid2OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of dfid2 5560 as of 4-Nov-2024. (Contributed by NM, 15-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfid2OLD | ⊢ I = {〈𝑥, 𝑥〉 ∣ 𝑥 = 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfid3 5561 | 1 ⊢ I = {〈𝑥, 𝑥〉 ∣ 𝑥 = 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {copab 5185 I cid 5557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5186 df-id 5558 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |