MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid2OLD Structured version   Visualization version   GIF version

Theorem dfid2OLD 5591
Description: Obsolete version of dfid2 5589 as of 4-Nov-2024. (Contributed by NM, 15-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfid2OLD I = {⟨𝑥, 𝑥⟩ ∣ 𝑥 = 𝑥}

Proof of Theorem dfid2OLD
StepHypRef Expression
1 dfid3 5590 1 I = {⟨𝑥, 𝑥⟩ ∣ 𝑥 = 𝑥}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {copab 5213   I cid 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-13 2377  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-opab 5214  df-id 5587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator