MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid2OLD Structured version   Visualization version   GIF version

Theorem dfid2OLD 5601
Description: Obsolete version of dfid2 5599 as of 4-Nov-2024. (Contributed by NM, 15-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfid2OLD I = {⟨𝑥, 𝑥⟩ ∣ 𝑥 = 𝑥}

Proof of Theorem dfid2OLD
StepHypRef Expression
1 dfid3 5600 1 I = {⟨𝑥, 𝑥⟩ ∣ 𝑥 = 𝑥}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {copab 5231   I cid 5596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-13 2374  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5232  df-id 5597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator