![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfid2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of dfid2 5589 as of 4-Nov-2024. (Contributed by NM, 15-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfid2OLD | ⊢ I = {〈𝑥, 𝑥〉 ∣ 𝑥 = 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfid3 5590 | 1 ⊢ I = {〈𝑥, 𝑥〉 ∣ 𝑥 = 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {copab 5213 I cid 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-opab 5214 df-id 5587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |