MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid2OLD Structured version   Visualization version   GIF version

Theorem dfid2OLD 5571
Description: Obsolete version of dfid2 5569 as of 4-Nov-2024. (Contributed by NM, 15-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfid2OLD I = {⟨𝑥, 𝑥⟩ ∣ 𝑥 = 𝑥}

Proof of Theorem dfid2OLD
StepHypRef Expression
1 dfid3 5570 1 I = {⟨𝑥, 𝑥⟩ ∣ 𝑥 = 𝑥}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  {copab 5203   I cid 5566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-13 2365  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-opab 5204  df-id 5567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator