![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfid2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of dfid2 5599 as of 4-Nov-2024. (Contributed by NM, 15-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfid2OLD | ⊢ I = {〈𝑥, 𝑥〉 ∣ 𝑥 = 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfid3 5600 | 1 ⊢ I = {〈𝑥, 𝑥〉 ∣ 𝑥 = 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {copab 5231 I cid 5596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-13 2374 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5232 df-id 5597 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |