![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtpid1 | Structured version Visualization version GIF version |
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
Ref | Expression |
---|---|
brtpid1 | ⊢ 𝐴{⟨𝐴, 𝐵⟩, 𝐶, 𝐷}𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5470 | . . 3 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
2 | 1 | tpid1 4777 | . 2 ⊢ ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩, 𝐶, 𝐷} |
3 | df-br 5153 | . 2 ⊢ (𝐴{⟨𝐴, 𝐵⟩, 𝐶, 𝐷}𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩, 𝐶, 𝐷}) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝐴{⟨𝐴, 𝐵⟩, 𝐶, 𝐷}𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 {ctp 4636 ⟨cop 4638 class class class wbr 5152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-br 5153 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |