Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtpid1 Structured version   Visualization version   GIF version

Theorem brtpid1 35837
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.)
Assertion
Ref Expression
brtpid1 𝐴{⟨𝐴, 𝐵⟩, 𝐶, 𝐷}𝐵

Proof of Theorem brtpid1
StepHypRef Expression
1 opex 5409 . . 3 𝐴, 𝐵⟩ ∈ V
21tpid1 4722 . 2 𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩, 𝐶, 𝐷}
3 df-br 5096 . 2 (𝐴{⟨𝐴, 𝐵⟩, 𝐶, 𝐷}𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩, 𝐶, 𝐷})
42, 3mpbir 231 1 𝐴{⟨𝐴, 𝐵⟩, 𝐶, 𝐷}𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  {ctp 4581  cop 4583   class class class wbr 5095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-br 5096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator