Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtpid1 | Structured version Visualization version GIF version |
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
Ref | Expression |
---|---|
brtpid1 | ⊢ 𝐴{〈𝐴, 𝐵〉, 𝐶, 𝐷}𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5379 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | 1 | tpid1 4704 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉, 𝐶, 𝐷} |
3 | df-br 5075 | . 2 ⊢ (𝐴{〈𝐴, 𝐵〉, 𝐶, 𝐷}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉, 𝐶, 𝐷}) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝐴{〈𝐴, 𝐵〉, 𝐶, 𝐷}𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {ctp 4565 〈cop 4567 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-br 5075 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |