Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtpid1 Structured version   Visualization version   GIF version

Theorem brtpid1 33665
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.)
Assertion
Ref Expression
brtpid1 𝐴{⟨𝐴, 𝐵⟩, 𝐶, 𝐷}𝐵

Proof of Theorem brtpid1
StepHypRef Expression
1 opex 5379 . . 3 𝐴, 𝐵⟩ ∈ V
21tpid1 4704 . 2 𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩, 𝐶, 𝐷}
3 df-br 5075 . 2 (𝐴{⟨𝐴, 𝐵⟩, 𝐶, 𝐷}𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩, 𝐶, 𝐷})
42, 3mpbir 230 1 𝐴{⟨𝐴, 𝐵⟩, 𝐶, 𝐷}𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {ctp 4565  cop 4567   class class class wbr 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-br 5075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator