| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brtpid1 | Structured version Visualization version GIF version | ||
| Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| brtpid1 | ⊢ 𝐴{〈𝐴, 𝐵〉, 𝐶, 𝐷}𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5399 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 2 | 1 | tpid1 4716 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉, 𝐶, 𝐷} |
| 3 | df-br 5087 | . 2 ⊢ (𝐴{〈𝐴, 𝐵〉, 𝐶, 𝐷}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉, 𝐶, 𝐷}) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝐴{〈𝐴, 𝐵〉, 𝐶, 𝐷}𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 {ctp 4575 〈cop 4577 class class class wbr 5086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-br 5087 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |