MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundir Structured version   Visualization version   GIF version

Theorem difundir 4254
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundir ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem difundir
StepHypRef Expression
1 indir 4249 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 4242 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 4242 . . 3 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
4 invdif 4242 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
53, 4uneq12i 4129 . 2 ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐶) ∪ (𝐵𝐶))
61, 2, 53eqtr3i 2760 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3447  cdif 3911  cun 3912  cin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921
This theorem is referenced by:  dfsymdif3  4269  difun2  4444  diftpsn3  4766  strleun  17127  setsfun0  17142  mreexmrid  17604  mreexexlem2d  17606  mvdco  19375  dprd2da  19974  dmdprdsplit2lem  19977  ablfac1eulem  20004  lbsextlem4  21071  opsrtoslem2  21963  nulmbl2  25437  uniioombllem3  25486  sltlpss  27819  slelss  27820  ex-dif  30352  indifundif  32453  imadifxp  32530  fzodif1  32715  chnccats1  32941  cycpmrn  33100  ballotlemfp1  34483  ballotlemgun  34516  onint1  36437  lindsadd  37607  lindsenlbs  37609  poimirlem2  37616  poimirlem6  37620  poimirlem7  37621  poimirlem8  37622  poimirlem22  37636  dvmptfprodlem  45942  fourierdlem102  46206  fourierdlem114  46218  caragenuncllem  46510  carageniuncllem1  46519
  Copyright terms: Public domain W3C validator