| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difundir | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 4252 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) | |
| 2 | invdif 4245 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶) | |
| 3 | invdif 4245 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 4 | invdif 4245 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 5 | 3, 4 | uneq12i 4132 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| 6 | 1, 2, 5 | 3eqtr3i 2761 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 |
| This theorem is referenced by: dfsymdif3 4272 difun2 4447 diftpsn3 4769 strleun 17134 setsfun0 17149 mreexmrid 17611 mreexexlem2d 17613 mvdco 19382 dprd2da 19981 dmdprdsplit2lem 19984 ablfac1eulem 20011 lbsextlem4 21078 opsrtoslem2 21970 nulmbl2 25444 uniioombllem3 25493 sltlpss 27826 slelss 27827 ex-dif 30359 indifundif 32460 imadifxp 32537 fzodif1 32722 chnccats1 32948 cycpmrn 33107 ballotlemfp1 34490 ballotlemgun 34523 onint1 36444 lindsadd 37614 lindsenlbs 37616 poimirlem2 37623 poimirlem6 37627 poimirlem7 37628 poimirlem8 37629 poimirlem22 37643 dvmptfprodlem 45949 fourierdlem102 46213 fourierdlem114 46225 caragenuncllem 46517 carageniuncllem1 46526 |
| Copyright terms: Public domain | W3C validator |