Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difundir | Structured version Visualization version GIF version |
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
difundir | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4206 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) | |
2 | invdif 4199 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶) | |
3 | invdif 4199 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
4 | invdif 4199 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
5 | 3, 4 | uneq12i 4091 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
6 | 1, 2, 5 | 3eqtr3i 2774 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 |
This theorem is referenced by: dfsymdif3 4227 difun2 4411 diftpsn3 4732 strleun 16786 setsfun0 16801 mreexmrid 17269 mreexexlem2d 17271 mvdco 18968 dprd2da 19560 dmdprdsplit2lem 19563 ablfac1eulem 19590 lbsextlem4 20338 opsrtoslem2 21173 nulmbl2 24605 uniioombllem3 24654 ex-dif 28688 indifundif 30774 imadifxp 30841 fzodif1 31016 cycpmrn 31312 ballotlemfp1 32358 ballotlemgun 32391 sltlpss 34014 onint1 34565 lindsadd 35697 lindsenlbs 35699 poimirlem2 35706 poimirlem6 35710 poimirlem7 35711 poimirlem8 35712 poimirlem22 35726 dvmptfprodlem 43375 fourierdlem102 43639 fourierdlem114 43651 caragenuncllem 43940 carageniuncllem1 43949 |
Copyright terms: Public domain | W3C validator |