MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundir Structured version   Visualization version   GIF version

Theorem difundir 4107
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundir ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem difundir
StepHypRef Expression
1 indir 4102 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 4095 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 4095 . . 3 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
4 invdif 4095 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
53, 4uneq12i 3988 . 2 ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐶) ∪ (𝐵𝐶))
61, 2, 53eqtr3i 2810 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  Vcvv 3398  cdif 3789  cun 3790  cin 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799
This theorem is referenced by:  dfsymdif3  4119  difun2  4272  diftpsn3  4566  setsfun0  16295  strleun  16368  mreexmrid  16693  mreexexlem2d  16695  mvdco  18252  dprd2da  18832  dmdprdsplit2lem  18835  ablfac1eulem  18862  lbsextlem4  19562  opsrtoslem2  19885  nulmbl2  23744  uniioombllem3  23793  ex-dif  27859  indifundif  29922  imadifxp  29981  ballotlemfp1  31156  ballotlemgun  31189  onint1  33035  lindsadd  34033  lindsenlbs  34035  poimirlem2  34042  poimirlem6  34046  poimirlem7  34047  poimirlem8  34048  poimirlem22  34062  dvmptfprodlem  41097  fourierdlem102  41362  fourierdlem114  41374  caragenuncllem  41663  carageniuncllem1  41672
  Copyright terms: Public domain W3C validator