| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difundir | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 4266 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) | |
| 2 | invdif 4259 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶) | |
| 3 | invdif 4259 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 4 | invdif 4259 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 5 | 3, 4 | uneq12i 4146 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| 6 | 1, 2, 5 | 3eqtr3i 2767 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3464 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 |
| This theorem is referenced by: dfsymdif3 4286 difun2 4461 diftpsn3 4783 strleun 17181 setsfun0 17196 mreexmrid 17660 mreexexlem2d 17662 mvdco 19431 dprd2da 20030 dmdprdsplit2lem 20033 ablfac1eulem 20060 lbsextlem4 21127 opsrtoslem2 22019 nulmbl2 25494 uniioombllem3 25543 sltlpss 27876 slelss 27877 ex-dif 30409 indifundif 32510 imadifxp 32587 fzodif1 32774 chnccats1 33000 cycpmrn 33159 ballotlemfp1 34529 ballotlemgun 34562 onint1 36472 lindsadd 37642 lindsenlbs 37644 poimirlem2 37651 poimirlem6 37655 poimirlem7 37656 poimirlem8 37657 poimirlem22 37671 dvmptfprodlem 45940 fourierdlem102 46204 fourierdlem114 46216 caragenuncllem 46508 carageniuncllem1 46517 |
| Copyright terms: Public domain | W3C validator |