| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difundir | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 4237 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) | |
| 2 | invdif 4230 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶) | |
| 3 | invdif 4230 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 4 | invdif 4230 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 5 | 3, 4 | uneq12i 4117 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| 6 | 1, 2, 5 | 3eqtr3i 2760 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3436 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 |
| This theorem is referenced by: dfsymdif3 4257 difun2 4432 diftpsn3 4753 strleun 17068 setsfun0 17083 mreexmrid 17549 mreexexlem2d 17551 mvdco 19324 dprd2da 19923 dmdprdsplit2lem 19926 ablfac1eulem 19953 lbsextlem4 21068 opsrtoslem2 21961 nulmbl2 25435 uniioombllem3 25484 sltlpss 27822 slelss 27823 ex-dif 30367 indifundif 32468 imadifxp 32545 fzodif1 32736 chnccats1 32958 cycpmrn 33086 ballotlemfp1 34466 ballotlemgun 34499 onint1 36433 lindsadd 37603 lindsenlbs 37605 poimirlem2 37612 poimirlem6 37616 poimirlem7 37617 poimirlem8 37618 poimirlem22 37632 dvmptfprodlem 45935 fourierdlem102 46199 fourierdlem114 46211 caragenuncllem 46503 carageniuncllem1 46512 |
| Copyright terms: Public domain | W3C validator |