![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difundir | Structured version Visualization version GIF version |
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
difundir | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4275 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) | |
2 | invdif 4268 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶) | |
3 | invdif 4268 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
4 | invdif 4268 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
5 | 3, 4 | uneq12i 4161 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
6 | 1, 2, 5 | 3eqtr3i 2768 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 Vcvv 3474 ∖ cdif 3945 ∪ cun 3946 ∩ cin 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 |
This theorem is referenced by: dfsymdif3 4296 difun2 4480 diftpsn3 4805 strleun 17092 setsfun0 17107 mreexmrid 17589 mreexexlem2d 17591 mvdco 19315 dprd2da 19914 dmdprdsplit2lem 19917 ablfac1eulem 19944 lbsextlem4 20780 opsrtoslem2 21623 nulmbl2 25060 uniioombllem3 25109 sltlpss 27409 slelss 27410 ex-dif 29714 indifundif 31800 imadifxp 31870 fzodif1 32042 cycpmrn 32343 ballotlemfp1 33559 ballotlemgun 33592 onint1 35420 lindsadd 36567 lindsenlbs 36569 poimirlem2 36576 poimirlem6 36580 poimirlem7 36581 poimirlem8 36582 poimirlem22 36596 dvmptfprodlem 44739 fourierdlem102 45003 fourierdlem114 45015 caragenuncllem 45307 carageniuncllem1 45316 |
Copyright terms: Public domain | W3C validator |