MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundir Structured version   Visualization version   GIF version

Theorem difundir 4211
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundir ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem difundir
StepHypRef Expression
1 indir 4206 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 4199 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 4199 . . 3 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
4 invdif 4199 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
53, 4uneq12i 4091 . 2 ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐶) ∪ (𝐵𝐶))
61, 2, 53eqtr3i 2774 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3422  cdif 3880  cun 3881  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890
This theorem is referenced by:  dfsymdif3  4227  difun2  4411  diftpsn3  4732  strleun  16786  setsfun0  16801  mreexmrid  17269  mreexexlem2d  17271  mvdco  18968  dprd2da  19560  dmdprdsplit2lem  19563  ablfac1eulem  19590  lbsextlem4  20338  opsrtoslem2  21173  nulmbl2  24605  uniioombllem3  24654  ex-dif  28688  indifundif  30774  imadifxp  30841  fzodif1  31016  cycpmrn  31312  ballotlemfp1  32358  ballotlemgun  32391  sltlpss  34014  onint1  34565  lindsadd  35697  lindsenlbs  35699  poimirlem2  35706  poimirlem6  35710  poimirlem7  35711  poimirlem8  35712  poimirlem22  35726  dvmptfprodlem  43375  fourierdlem102  43639  fourierdlem114  43651  caragenuncllem  43940  carageniuncllem1  43949
  Copyright terms: Public domain W3C validator