Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difundir | Structured version Visualization version GIF version |
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
difundir | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4214 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) | |
2 | invdif 4207 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶) | |
3 | invdif 4207 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
4 | invdif 4207 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
5 | 3, 4 | uneq12i 4099 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
6 | 1, 2, 5 | 3eqtr3i 2775 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 Vcvv 3430 ∖ cdif 3888 ∪ cun 3889 ∩ cin 3890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 |
This theorem is referenced by: dfsymdif3 4235 difun2 4419 diftpsn3 4740 strleun 16839 setsfun0 16854 mreexmrid 17333 mreexexlem2d 17335 mvdco 19034 dprd2da 19626 dmdprdsplit2lem 19629 ablfac1eulem 19656 lbsextlem4 20404 opsrtoslem2 21244 nulmbl2 24681 uniioombllem3 24730 ex-dif 28766 indifundif 30852 imadifxp 30919 fzodif1 31093 cycpmrn 31389 ballotlemfp1 32437 ballotlemgun 32470 sltlpss 34066 onint1 34617 lindsadd 35749 lindsenlbs 35751 poimirlem2 35758 poimirlem6 35762 poimirlem7 35763 poimirlem8 35764 poimirlem22 35778 dvmptfprodlem 43439 fourierdlem102 43703 fourierdlem114 43715 caragenuncllem 44004 carageniuncllem1 44013 |
Copyright terms: Public domain | W3C validator |