MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundir Structured version   Visualization version   GIF version

Theorem difundir 4242
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundir ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem difundir
StepHypRef Expression
1 indir 4237 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 4230 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 4230 . . 3 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
4 invdif 4230 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
53, 4uneq12i 4117 . 2 ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐶) ∪ (𝐵𝐶))
61, 2, 53eqtr3i 2760 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3436  cdif 3900  cun 3901  cin 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910
This theorem is referenced by:  dfsymdif3  4257  difun2  4432  diftpsn3  4753  strleun  17068  setsfun0  17083  mreexmrid  17549  mreexexlem2d  17551  mvdco  19324  dprd2da  19923  dmdprdsplit2lem  19926  ablfac1eulem  19953  lbsextlem4  21068  opsrtoslem2  21961  nulmbl2  25435  uniioombllem3  25484  sltlpss  27822  slelss  27823  ex-dif  30367  indifundif  32468  imadifxp  32545  fzodif1  32736  chnccats1  32958  cycpmrn  33086  ballotlemfp1  34466  ballotlemgun  34499  onint1  36433  lindsadd  37603  lindsenlbs  37605  poimirlem2  37612  poimirlem6  37616  poimirlem7  37617  poimirlem8  37618  poimirlem22  37632  dvmptfprodlem  45935  fourierdlem102  46199  fourierdlem114  46211  caragenuncllem  46503  carageniuncllem1  46512
  Copyright terms: Public domain W3C validator