Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difundir | Structured version Visualization version GIF version |
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
difundir | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4209 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) | |
2 | invdif 4202 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶) | |
3 | invdif 4202 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
4 | invdif 4202 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
5 | 3, 4 | uneq12i 4095 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
6 | 1, 2, 5 | 3eqtr3i 2774 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 |
This theorem is referenced by: dfsymdif3 4230 difun2 4414 diftpsn3 4735 strleun 16858 setsfun0 16873 mreexmrid 17352 mreexexlem2d 17354 mvdco 19053 dprd2da 19645 dmdprdsplit2lem 19648 ablfac1eulem 19675 lbsextlem4 20423 opsrtoslem2 21263 nulmbl2 24700 uniioombllem3 24749 ex-dif 28787 indifundif 30873 imadifxp 30940 fzodif1 31114 cycpmrn 31410 ballotlemfp1 32458 ballotlemgun 32491 sltlpss 34087 onint1 34638 lindsadd 35770 lindsenlbs 35772 poimirlem2 35779 poimirlem6 35783 poimirlem7 35784 poimirlem8 35785 poimirlem22 35799 dvmptfprodlem 43485 fourierdlem102 43749 fourierdlem114 43761 caragenuncllem 44050 carageniuncllem1 44059 |
Copyright terms: Public domain | W3C validator |