MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundir Structured version   Visualization version   GIF version

Theorem difundir 4257
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundir ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem difundir
StepHypRef Expression
1 indir 4252 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 4245 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 4245 . . 3 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
4 invdif 4245 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
53, 4uneq12i 4132 . 2 ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐶) ∪ (𝐵𝐶))
61, 2, 53eqtr3i 2761 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3450  cdif 3914  cun 3915  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924
This theorem is referenced by:  dfsymdif3  4272  difun2  4447  diftpsn3  4769  strleun  17134  setsfun0  17149  mreexmrid  17611  mreexexlem2d  17613  mvdco  19382  dprd2da  19981  dmdprdsplit2lem  19984  ablfac1eulem  20011  lbsextlem4  21078  opsrtoslem2  21970  nulmbl2  25444  uniioombllem3  25493  sltlpss  27826  slelss  27827  ex-dif  30359  indifundif  32460  imadifxp  32537  fzodif1  32722  chnccats1  32948  cycpmrn  33107  ballotlemfp1  34490  ballotlemgun  34523  onint1  36444  lindsadd  37614  lindsenlbs  37616  poimirlem2  37623  poimirlem6  37627  poimirlem7  37628  poimirlem8  37629  poimirlem22  37643  dvmptfprodlem  45949  fourierdlem102  46213  fourierdlem114  46225  caragenuncllem  46517  carageniuncllem1  46526
  Copyright terms: Public domain W3C validator