| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difundir | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 4245 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) | |
| 2 | invdif 4238 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶) | |
| 3 | invdif 4238 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 4 | invdif 4238 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 5 | 3, 4 | uneq12i 4125 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| 6 | 1, 2, 5 | 3eqtr3i 2760 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 |
| This theorem is referenced by: dfsymdif3 4265 difun2 4440 diftpsn3 4762 strleun 17103 setsfun0 17118 mreexmrid 17584 mreexexlem2d 17586 mvdco 19359 dprd2da 19958 dmdprdsplit2lem 19961 ablfac1eulem 19988 lbsextlem4 21103 opsrtoslem2 21996 nulmbl2 25470 uniioombllem3 25519 sltlpss 27857 slelss 27858 ex-dif 30402 indifundif 32503 imadifxp 32580 fzodif1 32765 chnccats1 32987 cycpmrn 33115 ballotlemfp1 34476 ballotlemgun 34509 onint1 36430 lindsadd 37600 lindsenlbs 37602 poimirlem2 37609 poimirlem6 37613 poimirlem7 37614 poimirlem8 37615 poimirlem22 37629 dvmptfprodlem 45935 fourierdlem102 46199 fourierdlem114 46211 caragenuncllem 46503 carageniuncllem1 46512 |
| Copyright terms: Public domain | W3C validator |