| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difundir | Structured version Visualization version GIF version | ||
| Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difundir | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 4249 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) | |
| 2 | invdif 4242 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶) | |
| 3 | invdif 4242 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 4 | invdif 4242 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 5 | 3, 4 | uneq12i 4129 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| 6 | 1, 2, 5 | 3eqtr3i 2760 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 |
| This theorem is referenced by: dfsymdif3 4269 difun2 4444 diftpsn3 4766 strleun 17127 setsfun0 17142 mreexmrid 17604 mreexexlem2d 17606 mvdco 19375 dprd2da 19974 dmdprdsplit2lem 19977 ablfac1eulem 20004 lbsextlem4 21071 opsrtoslem2 21963 nulmbl2 25437 uniioombllem3 25486 sltlpss 27819 slelss 27820 ex-dif 30352 indifundif 32453 imadifxp 32530 fzodif1 32715 chnccats1 32941 cycpmrn 33100 ballotlemfp1 34483 ballotlemgun 34516 onint1 36437 lindsadd 37607 lindsenlbs 37609 poimirlem2 37616 poimirlem6 37620 poimirlem7 37621 poimirlem8 37622 poimirlem22 37636 dvmptfprodlem 45942 fourierdlem102 46206 fourierdlem114 46218 caragenuncllem 46510 carageniuncllem1 46519 |
| Copyright terms: Public domain | W3C validator |