MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpdifsn Structured version   Visualization version   GIF version

Theorem lpdifsn 23037
Description: 𝑃 is a limit point of 𝑆 iff it is a limit point of 𝑆 ∖ {𝑃}. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpdifsn ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃}))))

Proof of Theorem lpdifsn
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21islp 23034 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
3 ssdifss 4106 . . . 4 (𝑆𝑋 → (𝑆 ∖ {𝑃}) ⊆ 𝑋)
41islp 23034 . . . 4 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑃}) ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃}))))
53, 4sylan2 593 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃}))))
6 difabs 4269 . . . . 5 ((𝑆 ∖ {𝑃}) ∖ {𝑃}) = (𝑆 ∖ {𝑃})
76fveq2i 6864 . . . 4 ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))
87eleq2i 2821 . . 3 (𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))
95, 8bitrdi 287 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
102, 9bitr4d 282 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3914  wss 3917  {csn 4592   cuni 4874  cfv 6514  Topctop 22787  clsccl 22912  limPtclp 23028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-cld 22913  df-cls 22915  df-lp 23030
This theorem is referenced by:  perfdvf  25811  limcrecl  45634
  Copyright terms: Public domain W3C validator