Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lpdifsn | Structured version Visualization version GIF version |
Description: 𝑃 is a limit point of 𝑆 iff it is a limit point of 𝑆 ∖ {𝑃}. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
lpdifsn | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | islp 22199 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
3 | ssdifss 4066 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 → (𝑆 ∖ {𝑃}) ⊆ 𝑋) | |
4 | 1 | islp 22199 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑃}) ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃})))) |
5 | 3, 4 | sylan2 592 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃})))) |
6 | difabs 4224 | . . . . 5 ⊢ ((𝑆 ∖ {𝑃}) ∖ {𝑃}) = (𝑆 ∖ {𝑃}) | |
7 | 6 | fveq2i 6759 | . . . 4 ⊢ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) |
8 | 7 | eleq2i 2830 | . . 3 ⊢ (𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))) |
9 | 5, 8 | bitrdi 286 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
10 | 2, 9 | bitr4d 281 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 clsccl 22077 limPtclp 22193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-cld 22078 df-cls 22080 df-lp 22195 |
This theorem is referenced by: perfdvf 24972 limcrecl 43060 |
Copyright terms: Public domain | W3C validator |