MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscon34b Structured version   Visualization version   GIF version

Theorem sscon34b 4296
Description: Relative complementation reverses inclusion of subclasses. Relativized version of complss 4146. (Contributed by RP, 3-Jun-2021.)
Assertion
Ref Expression
sscon34b ((𝐴𝐶𝐵𝐶) → (𝐴𝐵 ↔ (𝐶𝐵) ⊆ (𝐶𝐴)))

Proof of Theorem sscon34b
StepHypRef Expression
1 sscon 4138 . 2 (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))
2 sscon 4138 . . 3 ((𝐶𝐵) ⊆ (𝐶𝐴) → (𝐶 ∖ (𝐶𝐴)) ⊆ (𝐶 ∖ (𝐶𝐵)))
3 dfss4 4260 . . . . . 6 (𝐴𝐶 ↔ (𝐶 ∖ (𝐶𝐴)) = 𝐴)
43biimpi 215 . . . . 5 (𝐴𝐶 → (𝐶 ∖ (𝐶𝐴)) = 𝐴)
54adantr 479 . . . 4 ((𝐴𝐶𝐵𝐶) → (𝐶 ∖ (𝐶𝐴)) = 𝐴)
6 dfss4 4260 . . . . . 6 (𝐵𝐶 ↔ (𝐶 ∖ (𝐶𝐵)) = 𝐵)
76biimpi 215 . . . . 5 (𝐵𝐶 → (𝐶 ∖ (𝐶𝐵)) = 𝐵)
87adantl 480 . . . 4 ((𝐴𝐶𝐵𝐶) → (𝐶 ∖ (𝐶𝐵)) = 𝐵)
95, 8sseq12d 4013 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐶 ∖ (𝐶𝐴)) ⊆ (𝐶 ∖ (𝐶𝐵)) ↔ 𝐴𝐵))
102, 9imbitrid 243 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐶𝐵) ⊆ (𝐶𝐴) → 𝐴𝐵))
111, 10impbid2 225 1 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵 ↔ (𝐶𝐵) ⊆ (𝐶𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  cdif 3944  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3950  df-in 3954  df-ss 3964
This theorem is referenced by:  rcompleq  4297  ntrclsss  43730  ntrclsiso  43734  ntrclsk2  43735  ntrclsk3  43737
  Copyright terms: Public domain W3C validator