![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscon34b | Structured version Visualization version GIF version |
Description: Relative complementation reverses inclusion of subclasses. Relativized version of complss 4174. (Contributed by RP, 3-Jun-2021.) |
Ref | Expression |
---|---|
sscon34b | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscon 4166 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | |
2 | sscon 4166 | . . 3 ⊢ ((𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴) → (𝐶 ∖ (𝐶 ∖ 𝐴)) ⊆ (𝐶 ∖ (𝐶 ∖ 𝐵))) | |
3 | dfss4 4288 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) | |
4 | 3 | biimpi 216 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
6 | dfss4 4288 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) | |
7 | 6 | biimpi 216 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) |
9 | 5, 8 | sseq12d 4042 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ (𝐶 ∖ 𝐴)) ⊆ (𝐶 ∖ (𝐶 ∖ 𝐵)) ↔ 𝐴 ⊆ 𝐵)) |
10 | 2, 9 | imbitrid 244 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴) → 𝐴 ⊆ 𝐵)) |
11 | 1, 10 | impbid2 226 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∖ cdif 3973 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 |
This theorem is referenced by: rcompleq 4324 ntrclsss 44025 ntrclsiso 44029 ntrclsk2 44030 ntrclsk3 44032 |
Copyright terms: Public domain | W3C validator |