![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscon34b | Structured version Visualization version GIF version |
Description: Relative complementation reverses inclusion of subclasses. Relativized version of complss 4145. (Contributed by RP, 3-Jun-2021.) |
Ref | Expression |
---|---|
sscon34b | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscon 4137 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | |
2 | sscon 4137 | . . 3 ⊢ ((𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴) → (𝐶 ∖ (𝐶 ∖ 𝐴)) ⊆ (𝐶 ∖ (𝐶 ∖ 𝐵))) | |
3 | dfss4 4257 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) | |
4 | 3 | biimpi 215 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
5 | 4 | adantr 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
6 | dfss4 4257 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) | |
7 | 6 | biimpi 215 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) |
8 | 7 | adantl 480 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) |
9 | 5, 8 | sseq12d 4014 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ (𝐶 ∖ 𝐴)) ⊆ (𝐶 ∖ (𝐶 ∖ 𝐵)) ↔ 𝐴 ⊆ 𝐵)) |
10 | 2, 9 | imbitrid 243 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴) → 𝐴 ⊆ 𝐵)) |
11 | 1, 10 | impbid2 225 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∖ cdif 3944 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-in 3954 df-ss 3964 |
This theorem is referenced by: rcompleq 4294 ntrclsss 43116 ntrclsiso 43120 ntrclsk2 43121 ntrclsk3 43123 |
Copyright terms: Public domain | W3C validator |