| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscon34b | Structured version Visualization version GIF version | ||
| Description: Relative complementation reverses inclusion of subclasses. Relativized version of complss 4151. (Contributed by RP, 3-Jun-2021.) |
| Ref | Expression |
|---|---|
| sscon34b | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscon 4143 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | |
| 2 | sscon 4143 | . . 3 ⊢ ((𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴) → (𝐶 ∖ (𝐶 ∖ 𝐴)) ⊆ (𝐶 ∖ (𝐶 ∖ 𝐵))) | |
| 3 | dfss4 4269 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) | |
| 4 | 3 | biimpi 216 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
| 6 | dfss4 4269 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) | |
| 7 | 6 | biimpi 216 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) |
| 9 | 5, 8 | sseq12d 4017 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ (𝐶 ∖ 𝐴)) ⊆ (𝐶 ∖ (𝐶 ∖ 𝐵)) ↔ 𝐴 ⊆ 𝐵)) |
| 10 | 2, 9 | imbitrid 244 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴) → 𝐴 ⊆ 𝐵)) |
| 11 | 1, 10 | impbid2 226 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∖ cdif 3948 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 df-ss 3968 |
| This theorem is referenced by: rcompleq 4305 ntrclsss 44076 ntrclsiso 44080 ntrclsk2 44081 ntrclsk3 44083 |
| Copyright terms: Public domain | W3C validator |