MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcclem Structured version   Visualization version   GIF version

Theorem axcclem 10526
Description: Lemma for axcc 10527. (Contributed by Mario Carneiro, 2-Feb-2013.) (Revised by Mario Carneiro, 16-Nov-2013.)
Hypotheses
Ref Expression
axcclem.1 𝐴 = (𝑥 ∖ {∅})
axcclem.2 𝐹 = (𝑛 ∈ ω, 𝑦 𝐴 ↦ (𝑓𝑛))
axcclem.3 𝐺 = (𝑤𝐴 ↦ (‘suc (𝑓𝑤)))
Assertion
Ref Expression
axcclem (𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
Distinct variable groups:   𝐴,𝑓,,𝑛,𝑦   𝑤,𝐴,𝑧,𝑓,   ,𝐹,𝑧   𝑔,𝐺,𝑧   𝑓,𝑔,𝑥,
Allowed substitution hints:   𝐴(𝑥,𝑔)   𝐹(𝑥,𝑦,𝑤,𝑓,𝑔,𝑛)   𝐺(𝑥,𝑦,𝑤,𝑓,,𝑛)

Proof of Theorem axcclem
Dummy variables 𝑐 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfinite2 9362 . . . . . . . 8 (𝐴 ≺ ω → 𝐴 ∈ Fin)
2 axcclem.1 . . . . . . . . . 10 𝐴 = (𝑥 ∖ {∅})
32eleq1i 2835 . . . . . . . . 9 (𝐴 ∈ Fin ↔ (𝑥 ∖ {∅}) ∈ Fin)
4 undif1 4499 . . . . . . . . . . 11 ((𝑥 ∖ {∅}) ∪ {∅}) = (𝑥 ∪ {∅})
5 snfi 9109 . . . . . . . . . . . 12 {∅} ∈ Fin
6 unfi 9238 . . . . . . . . . . . 12 (((𝑥 ∖ {∅}) ∈ Fin ∧ {∅} ∈ Fin) → ((𝑥 ∖ {∅}) ∪ {∅}) ∈ Fin)
75, 6mpan2 690 . . . . . . . . . . 11 ((𝑥 ∖ {∅}) ∈ Fin → ((𝑥 ∖ {∅}) ∪ {∅}) ∈ Fin)
84, 7eqeltrrid 2849 . . . . . . . . . 10 ((𝑥 ∖ {∅}) ∈ Fin → (𝑥 ∪ {∅}) ∈ Fin)
9 ssun1 4201 . . . . . . . . . 10 𝑥 ⊆ (𝑥 ∪ {∅})
10 ssfi 9240 . . . . . . . . . 10 (((𝑥 ∪ {∅}) ∈ Fin ∧ 𝑥 ⊆ (𝑥 ∪ {∅})) → 𝑥 ∈ Fin)
118, 9, 10sylancl 585 . . . . . . . . 9 ((𝑥 ∖ {∅}) ∈ Fin → 𝑥 ∈ Fin)
123, 11sylbi 217 . . . . . . . 8 (𝐴 ∈ Fin → 𝑥 ∈ Fin)
13 dcomex 10516 . . . . . . . . . 10 ω ∈ V
14 isfiniteg 9365 . . . . . . . . . 10 (ω ∈ V → (𝑥 ∈ Fin ↔ 𝑥 ≺ ω))
1513, 14ax-mp 5 . . . . . . . . 9 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
16 sdomnen 9041 . . . . . . . . 9 (𝑥 ≺ ω → ¬ 𝑥 ≈ ω)
1715, 16sylbi 217 . . . . . . . 8 (𝑥 ∈ Fin → ¬ 𝑥 ≈ ω)
181, 12, 173syl 18 . . . . . . 7 (𝐴 ≺ ω → ¬ 𝑥 ≈ ω)
1918con2i 139 . . . . . 6 (𝑥 ≈ ω → ¬ 𝐴 ≺ ω)
20 sdomentr 9177 . . . . . . 7 ((𝐴𝑥𝑥 ≈ ω) → 𝐴 ≺ ω)
2120expcom 413 . . . . . 6 (𝑥 ≈ ω → (𝐴𝑥𝐴 ≺ ω))
2219, 21mtod 198 . . . . 5 (𝑥 ≈ ω → ¬ 𝐴𝑥)
23 vex 3492 . . . . . 6 𝑥 ∈ V
24 difss 4159 . . . . . . 7 (𝑥 ∖ {∅}) ⊆ 𝑥
252, 24eqsstri 4043 . . . . . 6 𝐴𝑥
26 ssdomg 9060 . . . . . 6 (𝑥 ∈ V → (𝐴𝑥𝐴𝑥))
2723, 25, 26mp2 9 . . . . 5 𝐴𝑥
2822, 27jctil 519 . . . 4 (𝑥 ≈ ω → (𝐴𝑥 ∧ ¬ 𝐴𝑥))
29 bren2 9043 . . . 4 (𝐴𝑥 ↔ (𝐴𝑥 ∧ ¬ 𝐴𝑥))
3028, 29sylibr 234 . . 3 (𝑥 ≈ ω → 𝐴𝑥)
31 entr 9066 . . 3 ((𝐴𝑥𝑥 ≈ ω) → 𝐴 ≈ ω)
3230, 31mpancom 687 . 2 (𝑥 ≈ ω → 𝐴 ≈ ω)
33 ensym 9063 . 2 (𝐴 ≈ ω → ω ≈ 𝐴)
34 bren 9013 . . 3 (ω ≈ 𝐴 ↔ ∃𝑓 𝑓:ω–1-1-onto𝐴)
35 f1of 6862 . . . . . . . 8 (𝑓:ω–1-1-onto𝐴𝑓:ω⟶𝐴)
36 peano1 7927 . . . . . . . 8 ∅ ∈ ω
37 ffvelcdm 7115 . . . . . . . 8 ((𝑓:ω⟶𝐴 ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ 𝐴)
3835, 36, 37sylancl 585 . . . . . . 7 (𝑓:ω–1-1-onto𝐴 → (𝑓‘∅) ∈ 𝐴)
39 eldifn 4155 . . . . . . . . 9 ((𝑓‘∅) ∈ (𝑥 ∖ {∅}) → ¬ (𝑓‘∅) ∈ {∅})
4039, 2eleq2s 2862 . . . . . . . 8 ((𝑓‘∅) ∈ 𝐴 → ¬ (𝑓‘∅) ∈ {∅})
41 fvex 6933 . . . . . . . . . . 11 (𝑓‘∅) ∈ V
4241elsn 4663 . . . . . . . . . 10 ((𝑓‘∅) ∈ {∅} ↔ (𝑓‘∅) = ∅)
4342notbii 320 . . . . . . . . 9 (¬ (𝑓‘∅) ∈ {∅} ↔ ¬ (𝑓‘∅) = ∅)
44 neq0 4375 . . . . . . . . 9 (¬ (𝑓‘∅) = ∅ ↔ ∃𝑐 𝑐 ∈ (𝑓‘∅))
4543, 44bitr2i 276 . . . . . . . 8 (∃𝑐 𝑐 ∈ (𝑓‘∅) ↔ ¬ (𝑓‘∅) ∈ {∅})
4640, 45sylibr 234 . . . . . . 7 ((𝑓‘∅) ∈ 𝐴 → ∃𝑐 𝑐 ∈ (𝑓‘∅))
4738, 46syl 17 . . . . . 6 (𝑓:ω–1-1-onto𝐴 → ∃𝑐 𝑐 ∈ (𝑓‘∅))
48 elunii 4936 . . . . . . . . . . 11 ((𝑐 ∈ (𝑓‘∅) ∧ (𝑓‘∅) ∈ 𝐴) → 𝑐 𝐴)
4938, 48sylan2 592 . . . . . . . . . 10 ((𝑐 ∈ (𝑓‘∅) ∧ 𝑓:ω–1-1-onto𝐴) → 𝑐 𝐴)
5035ffvelcdmda 7118 . . . . . . . . . . . . . 14 ((𝑓:ω–1-1-onto𝐴𝑛 ∈ ω) → (𝑓𝑛) ∈ 𝐴)
51 difabs 4322 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∖ {∅}) ∖ {∅}) = (𝑥 ∖ {∅})
522difeq1i 4145 . . . . . . . . . . . . . . . . . 18 (𝐴 ∖ {∅}) = ((𝑥 ∖ {∅}) ∖ {∅})
5351, 52, 23eqtr4i 2778 . . . . . . . . . . . . . . . . 17 (𝐴 ∖ {∅}) = 𝐴
54 pwuni 4969 . . . . . . . . . . . . . . . . . 18 𝐴 ⊆ 𝒫 𝐴
55 ssdif 4167 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ 𝒫 𝐴 → (𝐴 ∖ {∅}) ⊆ (𝒫 𝐴 ∖ {∅}))
5654, 55ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝐴 ∖ {∅}) ⊆ (𝒫 𝐴 ∖ {∅})
5753, 56eqsstrri 4044 . . . . . . . . . . . . . . . 16 𝐴 ⊆ (𝒫 𝐴 ∖ {∅})
5857sseli 4004 . . . . . . . . . . . . . . 15 ((𝑓𝑛) ∈ 𝐴 → (𝑓𝑛) ∈ (𝒫 𝐴 ∖ {∅}))
5958ralrimivw 3156 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ 𝐴 → ∀𝑦 𝐴(𝑓𝑛) ∈ (𝒫 𝐴 ∖ {∅}))
6050, 59syl 17 . . . . . . . . . . . . 13 ((𝑓:ω–1-1-onto𝐴𝑛 ∈ ω) → ∀𝑦 𝐴(𝑓𝑛) ∈ (𝒫 𝐴 ∖ {∅}))
6160ralrimiva 3152 . . . . . . . . . . . 12 (𝑓:ω–1-1-onto𝐴 → ∀𝑛 ∈ ω ∀𝑦 𝐴(𝑓𝑛) ∈ (𝒫 𝐴 ∖ {∅}))
62 axcclem.2 . . . . . . . . . . . . 13 𝐹 = (𝑛 ∈ ω, 𝑦 𝐴 ↦ (𝑓𝑛))
6362fmpo 8109 . . . . . . . . . . . 12 (∀𝑛 ∈ ω ∀𝑦 𝐴(𝑓𝑛) ∈ (𝒫 𝐴 ∖ {∅}) ↔ 𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
6461, 63sylib 218 . . . . . . . . . . 11 (𝑓:ω–1-1-onto𝐴𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
6564adantl 481 . . . . . . . . . 10 ((𝑐 ∈ (𝑓‘∅) ∧ 𝑓:ω–1-1-onto𝐴) → 𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
6623difexi 5348 . . . . . . . . . . . . 13 (𝑥 ∖ {∅}) ∈ V
672, 66eqeltri 2840 . . . . . . . . . . . 12 𝐴 ∈ V
6867uniex 7776 . . . . . . . . . . 11 𝐴 ∈ V
6968axdc4 10525 . . . . . . . . . 10 ((𝑐 𝐴𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃(:ω⟶ 𝐴 ∧ (‘∅) = 𝑐 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘))))
7049, 65, 69syl2anc 583 . . . . . . . . 9 ((𝑐 ∈ (𝑓‘∅) ∧ 𝑓:ω–1-1-onto𝐴) → ∃(:ω⟶ 𝐴 ∧ (‘∅) = 𝑐 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘))))
71 3simpb 1149 . . . . . . . . . 10 ((:ω⟶ 𝐴 ∧ (‘∅) = 𝑐 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘))) → (:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘))))
7271eximi 1833 . . . . . . . . 9 (∃(:ω⟶ 𝐴 ∧ (‘∅) = 𝑐 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘))) → ∃(:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘))))
7370, 72syl 17 . . . . . . . 8 ((𝑐 ∈ (𝑓‘∅) ∧ 𝑓:ω–1-1-onto𝐴) → ∃(:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘))))
7473ex 412 . . . . . . 7 (𝑐 ∈ (𝑓‘∅) → (𝑓:ω–1-1-onto𝐴 → ∃(:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)))))
7574exlimiv 1929 . . . . . 6 (∃𝑐 𝑐 ∈ (𝑓‘∅) → (𝑓:ω–1-1-onto𝐴 → ∃(:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)))))
7647, 75mpcom 38 . . . . 5 (𝑓:ω–1-1-onto𝐴 → ∃(:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘))))
77 velsn 4664 . . . . . . . . . . 11 (𝑧 ∈ {∅} ↔ 𝑧 = ∅)
7877necon3bbii 2994 . . . . . . . . . 10 𝑧 ∈ {∅} ↔ 𝑧 ≠ ∅)
792eleq2i 2836 . . . . . . . . . . 11 (𝑧𝐴𝑧 ∈ (𝑥 ∖ {∅}))
80 eldif 3986 . . . . . . . . . . 11 (𝑧 ∈ (𝑥 ∖ {∅}) ↔ (𝑧𝑥 ∧ ¬ 𝑧 ∈ {∅}))
8179, 80sylbbr 236 . . . . . . . . . 10 ((𝑧𝑥 ∧ ¬ 𝑧 ∈ {∅}) → 𝑧𝐴)
8278, 81sylan2br 594 . . . . . . . . 9 ((𝑧𝑥𝑧 ≠ ∅) → 𝑧𝐴)
83 simpl 482 . . . . . . . . . . . 12 ((𝑓:ω–1-1-onto𝐴𝑧𝐴) → 𝑓:ω–1-1-onto𝐴)
84 f1ofo 6869 . . . . . . . . . . . . . 14 (𝑓:ω–1-1-onto𝐴𝑓:ω–onto𝐴)
85 foelrn 7141 . . . . . . . . . . . . . 14 ((𝑓:ω–onto𝐴𝑧𝐴) → ∃𝑖 ∈ ω 𝑧 = (𝑓𝑖))
8684, 85sylan 579 . . . . . . . . . . . . 13 ((𝑓:ω–1-1-onto𝐴𝑧𝐴) → ∃𝑖 ∈ ω 𝑧 = (𝑓𝑖))
87 suceq 6461 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 = 𝑖 → suc 𝑘 = suc 𝑖)
8887fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑖 → (‘suc 𝑘) = (‘suc 𝑖))
89 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 = 𝑖𝑘 = 𝑖)
90 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 = 𝑖 → (𝑘) = (𝑖))
9189, 90oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑖 → (𝑘𝐹(𝑘)) = (𝑖𝐹(𝑖)))
9288, 91eleq12d 2838 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → ((‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ↔ (‘suc 𝑖) ∈ (𝑖𝐹(𝑖))))
9392rspcv 3631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ ω → (∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) → (‘suc 𝑖) ∈ (𝑖𝐹(𝑖))))
94933ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) → (∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) → (‘suc 𝑖) ∈ (𝑖𝐹(𝑖))))
9594imp 406 . . . . . . . . . . . . . . . . . . . . 21 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘))) → (‘suc 𝑖) ∈ (𝑖𝐹(𝑖)))
96953adant3 1132 . . . . . . . . . . . . . . . . . . . 20 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → (‘suc 𝑖) ∈ (𝑖𝐹(𝑖)))
97 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = (𝑓𝑖) ↔ (𝑓𝑖) = 𝑧)
98 f1ocnvfv 7314 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) → ((𝑓𝑖) = 𝑧 → (𝑓𝑧) = 𝑖))
9997, 98biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) → (𝑧 = (𝑓𝑖) → (𝑓𝑧) = 𝑖))
100993adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) → (𝑧 = (𝑓𝑖) → (𝑓𝑧) = 𝑖))
101100imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ 𝑧 = (𝑓𝑖)) → (𝑓𝑧) = 𝑖)
102101eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . 23 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ 𝑧 = (𝑓𝑖)) → 𝑖 = (𝑓𝑧))
1031023adant2 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → 𝑖 = (𝑓𝑧))
104 suceq 6461 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑓𝑧) → suc 𝑖 = suc (𝑓𝑧))
105103, 104syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → suc 𝑖 = suc (𝑓𝑧))
106105fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → (‘suc 𝑖) = (‘suc (𝑓𝑧)))
107 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((:ω⟶ 𝐴𝑖 ∈ ω) → 𝑖 ∈ ω)
108 ffvelcdm 7115 . . . . . . . . . . . . . . . . . . . . . . 23 ((:ω⟶ 𝐴𝑖 ∈ ω) → (𝑖) ∈ 𝐴)
109 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
110 eqidd 2741 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑖) → (𝑓𝑖) = (𝑓𝑖))
111 fvex 6933 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓𝑖) ∈ V
112109, 110, 62, 111ovmpo 7610 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ω ∧ (𝑖) ∈ 𝐴) → (𝑖𝐹(𝑖)) = (𝑓𝑖))
113107, 108, 112syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((:ω⟶ 𝐴𝑖 ∈ ω) → (𝑖𝐹(𝑖)) = (𝑓𝑖))
1141133adant2 1131 . . . . . . . . . . . . . . . . . . . . 21 ((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) → (𝑖𝐹(𝑖)) = (𝑓𝑖))
1151143ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → (𝑖𝐹(𝑖)) = (𝑓𝑖))
11696, 106, 1153eltr3d 2858 . . . . . . . . . . . . . . . . . . 19 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → (‘suc (𝑓𝑧)) ∈ (𝑓𝑖))
11735ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) → (𝑓𝑖) ∈ 𝐴)
1181173adant1 1130 . . . . . . . . . . . . . . . . . . . . . 22 ((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) → (𝑓𝑖) ∈ 𝐴)
1191183ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . 21 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → (𝑓𝑖) ∈ 𝐴)
120 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑓𝑖) → (𝑧𝐴 ↔ (𝑓𝑖) ∈ 𝐴))
1211203ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → (𝑧𝐴 ↔ (𝑓𝑖) ∈ 𝐴))
122119, 121mpbird 257 . . . . . . . . . . . . . . . . . . . 20 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → 𝑧𝐴)
123 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑧 → (𝑓𝑤) = (𝑓𝑧))
124 suceq 6461 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑤) = (𝑓𝑧) → suc (𝑓𝑤) = suc (𝑓𝑧))
125123, 124syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑧 → suc (𝑓𝑤) = suc (𝑓𝑧))
126125fveq2d 6924 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → (‘suc (𝑓𝑤)) = (‘suc (𝑓𝑧)))
127 axcclem.3 . . . . . . . . . . . . . . . . . . . . 21 𝐺 = (𝑤𝐴 ↦ (‘suc (𝑓𝑤)))
128 fvex 6933 . . . . . . . . . . . . . . . . . . . . 21 (‘suc (𝑓𝑧)) ∈ V
129126, 127, 128fvmpt 7029 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐴 → (𝐺𝑧) = (‘suc (𝑓𝑧)))
130122, 129syl 17 . . . . . . . . . . . . . . . . . . 19 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → (𝐺𝑧) = (‘suc (𝑓𝑧)))
131 simp3 1138 . . . . . . . . . . . . . . . . . . 19 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → 𝑧 = (𝑓𝑖))
132116, 130, 1313eltr4d 2859 . . . . . . . . . . . . . . . . . 18 (((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) ∧ 𝑧 = (𝑓𝑖)) → (𝐺𝑧) ∈ 𝑧)
1331323exp 1119 . . . . . . . . . . . . . . . . 17 ((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) → (∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) → (𝑧 = (𝑓𝑖) → (𝐺𝑧) ∈ 𝑧)))
134133com3r 87 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓𝑖) → ((:ω⟶ 𝐴𝑓:ω–1-1-onto𝐴𝑖 ∈ ω) → (∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) → (𝐺𝑧) ∈ 𝑧)))
1351343expd 1353 . . . . . . . . . . . . . . 15 (𝑧 = (𝑓𝑖) → (:ω⟶ 𝐴 → (𝑓:ω–1-1-onto𝐴 → (𝑖 ∈ ω → (∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) → (𝐺𝑧) ∈ 𝑧)))))
136135com4r 94 . . . . . . . . . . . . . 14 (𝑖 ∈ ω → (𝑧 = (𝑓𝑖) → (:ω⟶ 𝐴 → (𝑓:ω–1-1-onto𝐴 → (∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) → (𝐺𝑧) ∈ 𝑧)))))
137136rexlimiv 3154 . . . . . . . . . . . . 13 (∃𝑖 ∈ ω 𝑧 = (𝑓𝑖) → (:ω⟶ 𝐴 → (𝑓:ω–1-1-onto𝐴 → (∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) → (𝐺𝑧) ∈ 𝑧))))
13886, 137syl 17 . . . . . . . . . . . 12 ((𝑓:ω–1-1-onto𝐴𝑧𝐴) → (:ω⟶ 𝐴 → (𝑓:ω–1-1-onto𝐴 → (∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) → (𝐺𝑧) ∈ 𝑧))))
13983, 138mpid 44 . . . . . . . . . . 11 ((𝑓:ω–1-1-onto𝐴𝑧𝐴) → (:ω⟶ 𝐴 → (∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)) → (𝐺𝑧) ∈ 𝑧)))
140139impd 410 . . . . . . . . . 10 ((𝑓:ω–1-1-onto𝐴𝑧𝐴) → ((:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘))) → (𝐺𝑧) ∈ 𝑧))
141140impancom 451 . . . . . . . . 9 ((𝑓:ω–1-1-onto𝐴 ∧ (:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)))) → (𝑧𝐴 → (𝐺𝑧) ∈ 𝑧))
14282, 141syl5 34 . . . . . . . 8 ((𝑓:ω–1-1-onto𝐴 ∧ (:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)))) → ((𝑧𝑥𝑧 ≠ ∅) → (𝐺𝑧) ∈ 𝑧))
143142expd 415 . . . . . . 7 ((𝑓:ω–1-1-onto𝐴 ∧ (:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)))) → (𝑧𝑥 → (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧)))
144143ralrimiv 3151 . . . . . 6 ((𝑓:ω–1-1-onto𝐴 ∧ (:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)))) → ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
145 fvrn0 6950 . . . . . . . . . . 11 (‘suc (𝑓𝑤)) ∈ (ran ∪ {∅})
146145rgenw 3071 . . . . . . . . . 10 𝑤𝐴 (‘suc (𝑓𝑤)) ∈ (ran ∪ {∅})
147 eqid 2740 . . . . . . . . . . 11 (𝑤𝐴 ↦ (‘suc (𝑓𝑤))) = (𝑤𝐴 ↦ (‘suc (𝑓𝑤)))
148147fmpt 7144 . . . . . . . . . 10 (∀𝑤𝐴 (‘suc (𝑓𝑤)) ∈ (ran ∪ {∅}) ↔ (𝑤𝐴 ↦ (‘suc (𝑓𝑤))):𝐴⟶(ran ∪ {∅}))
149146, 148mpbi 230 . . . . . . . . 9 (𝑤𝐴 ↦ (‘suc (𝑓𝑤))):𝐴⟶(ran ∪ {∅})
150 vex 3492 . . . . . . . . . . 11 ∈ V
151150rnex 7950 . . . . . . . . . 10 ran ∈ V
152 p0ex 5402 . . . . . . . . . 10 {∅} ∈ V
153151, 152unex 7779 . . . . . . . . 9 (ran ∪ {∅}) ∈ V
154 fex2 7974 . . . . . . . . 9 (((𝑤𝐴 ↦ (‘suc (𝑓𝑤))):𝐴⟶(ran ∪ {∅}) ∧ 𝐴 ∈ V ∧ (ran ∪ {∅}) ∈ V) → (𝑤𝐴 ↦ (‘suc (𝑓𝑤))) ∈ V)
155149, 67, 153, 154mp3an 1461 . . . . . . . 8 (𝑤𝐴 ↦ (‘suc (𝑓𝑤))) ∈ V
156127, 155eqeltri 2840 . . . . . . 7 𝐺 ∈ V
157 fveq1 6919 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑔𝑧) = (𝐺𝑧))
158157eleq1d 2829 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑔𝑧) ∈ 𝑧 ↔ (𝐺𝑧) ∈ 𝑧))
159158imbi2d 340 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧)))
160159ralbidv 3184 . . . . . . 7 (𝑔 = 𝐺 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧)))
161156, 160spcev 3619 . . . . . 6 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧) → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
162144, 161syl 17 . . . . 5 ((𝑓:ω–1-1-onto𝐴 ∧ (:ω⟶ 𝐴 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝑘𝐹(𝑘)))) → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
16376, 162exlimddv 1934 . . . 4 (𝑓:ω–1-1-onto𝐴 → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
164163exlimiv 1929 . . 3 (∃𝑓 𝑓:ω–1-1-onto𝐴 → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
16534, 164sylbi 217 . 2 (ω ≈ 𝐴 → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
16632, 33, 1653syl 18 1 (𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  cun 3974  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  ran crn 5701  suc csuc 6397  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903  cen 9000  cdom 9001  csdm 9002  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by:  axcc  10527
  Copyright terms: Public domain W3C validator