MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difpr Structured version   Visualization version   GIF version

Theorem difpr 4767
Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.)
Assertion
Ref Expression
difpr (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})

Proof of Theorem difpr
StepHypRef Expression
1 df-pr 4592 . . 3 {𝐵, 𝐶} = ({𝐵} ∪ {𝐶})
21difeq2i 4086 . 2 (𝐴 ∖ {𝐵, 𝐶}) = (𝐴 ∖ ({𝐵} ∪ {𝐶}))
3 difun1 4262 . 2 (𝐴 ∖ ({𝐵} ∪ {𝐶})) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
42, 3eqtri 2752 1 (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3911  cun 3912  {csn 4589  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-pr 4592
This theorem is referenced by:  hashdifpr  14380  nbgrssvwo2  29289  nbupgrres  29291  nbupgruvtxres  29334  uvtxupgrres  29335  pmtrcnelor  33048
  Copyright terms: Public domain W3C validator