MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difpr Structured version   Visualization version   GIF version

Theorem difpr 4779
Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.)
Assertion
Ref Expression
difpr (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})

Proof of Theorem difpr
StepHypRef Expression
1 df-pr 4604 . . 3 {𝐵, 𝐶} = ({𝐵} ∪ {𝐶})
21difeq2i 4098 . 2 (𝐴 ∖ {𝐵, 𝐶}) = (𝐴 ∖ ({𝐵} ∪ {𝐶}))
3 difun1 4274 . 2 (𝐴 ∖ ({𝐵} ∪ {𝐶})) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
42, 3eqtri 2758 1 (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3923  cun 3924  {csn 4601  {cpr 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-pr 4604
This theorem is referenced by:  hashdifpr  14433  nbgrssvwo2  29341  nbupgrres  29343  nbupgruvtxres  29386  uvtxupgrres  29387  pmtrcnelor  33102
  Copyright terms: Public domain W3C validator