| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difpr | Structured version Visualization version GIF version | ||
| Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.) |
| Ref | Expression |
|---|---|
| difpr | ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4629 | . . 3 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
| 2 | 1 | difeq2i 4123 | . 2 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = (𝐴 ∖ ({𝐵} ∪ {𝐶})) |
| 3 | difun1 4299 | . 2 ⊢ (𝐴 ∖ ({𝐵} ∪ {𝐶})) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) | |
| 4 | 2, 3 | eqtri 2765 | 1 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3948 ∪ cun 3949 {csn 4626 {cpr 4628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-pr 4629 |
| This theorem is referenced by: hashdifpr 14454 nbgrssvwo2 29379 nbupgrres 29381 nbupgruvtxres 29424 uvtxupgrres 29425 pmtrcnelor 33111 |
| Copyright terms: Public domain | W3C validator |