![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difpr | Structured version Visualization version GIF version |
Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.) |
Ref | Expression |
---|---|
difpr | ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4632 | . . 3 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
2 | 1 | difeq2i 4120 | . 2 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = (𝐴 ∖ ({𝐵} ∪ {𝐶})) |
3 | difun1 4290 | . 2 ⊢ (𝐴 ∖ ({𝐵} ∪ {𝐶})) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) | |
4 | 2, 3 | eqtri 2758 | 1 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3946 ∪ cun 3947 {csn 4629 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-pr 4632 |
This theorem is referenced by: hashdifpr 14381 nbgrssvwo2 28884 nbupgrres 28886 nbupgruvtxres 28929 uvtxupgrres 28930 pmtrcnelor 32520 |
Copyright terms: Public domain | W3C validator |