MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difpr Structured version   Visualization version   GIF version

Theorem difpr 4736
Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.)
Assertion
Ref Expression
difpr (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})

Proof of Theorem difpr
StepHypRef Expression
1 df-pr 4564 . . 3 {𝐵, 𝐶} = ({𝐵} ∪ {𝐶})
21difeq2i 4054 . 2 (𝐴 ∖ {𝐵, 𝐶}) = (𝐴 ∖ ({𝐵} ∪ {𝐶}))
3 difun1 4223 . 2 (𝐴 ∖ ({𝐵} ∪ {𝐶})) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
42, 3eqtri 2766 1 (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884  cun 3885  {csn 4561  {cpr 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-pr 4564
This theorem is referenced by:  hashdifpr  14130  nbgrssvwo2  27729  nbupgrres  27731  nbupgruvtxres  27774  uvtxupgrres  27775  pmtrcnelor  31360
  Copyright terms: Public domain W3C validator