| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > diftpsn3 | Structured version Visualization version GIF version | ||
| Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| diftpsn3 | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjprsn 4667 | . . . . 5 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) | |
| 2 | disj3 4404 | . . . . 5 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶})) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶})) |
| 4 | 3 | eqcomd 2737 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∖ {𝐶}) = {𝐴, 𝐵}) |
| 5 | difid 4326 | . . . 4 ⊢ ({𝐶} ∖ {𝐶}) = ∅ | |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐶} ∖ {𝐶}) = ∅) |
| 7 | 4, 6 | uneq12d 4119 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵} ∪ ∅)) |
| 8 | df-tp 4581 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 9 | 8 | difeq1i 4072 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) |
| 10 | difundir 4241 | . . 3 ⊢ (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) | |
| 11 | 9, 10 | eqtr2i 2755 | . 2 ⊢ (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) |
| 12 | un0 4344 | . 2 ⊢ ({𝐴, 𝐵} ∪ ∅) = {𝐴, 𝐵} | |
| 13 | 7, 11, 12 | 3eqtr3g 2789 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2928 ∖ cdif 3899 ∪ cun 3900 ∩ cin 3901 ∅c0 4283 {csn 4576 {cpr 4578 {ctp 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-tp 4581 |
| This theorem is referenced by: f13dfv 7208 ex-chn2 18544 nb3grprlem2 29360 cplgr3v 29414 frgr3v 30253 3vfriswmgr 30256 signswch 34572 signstfvcl 34584 |
| Copyright terms: Public domain | W3C validator |