MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diftpsn3 Structured version   Visualization version   GIF version

Theorem diftpsn3 4766
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
diftpsn3 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})

Proof of Theorem diftpsn3
StepHypRef Expression
1 disjprsn 4678 . . . . 5 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
2 disj3 4417 . . . . 5 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶}))
31, 2sylib 218 . . . 4 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶}))
43eqcomd 2735 . . 3 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∖ {𝐶}) = {𝐴, 𝐵})
5 difid 4339 . . . 4 ({𝐶} ∖ {𝐶}) = ∅
65a1i 11 . . 3 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∖ {𝐶}) = ∅)
74, 6uneq12d 4132 . 2 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵} ∪ ∅))
8 df-tp 4594 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
98difeq1i 4085 . . 3 ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶})
10 difundir 4254 . . 3 (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶}))
119, 10eqtr2i 2753 . 2 (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶})
12 un0 4357 . 2 ({𝐴, 𝐵} ∪ ∅) = {𝐴, 𝐵}
137, 11, 123eqtr3g 2787 1 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2925  cdif 3911  cun 3912  cin 3913  c0 4296  {csn 4589  {cpr 4591  {ctp 4593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-sn 4590  df-pr 4592  df-tp 4594
This theorem is referenced by:  f13dfv  7249  nb3grprlem2  29308  cplgr3v  29362  frgr3v  30204  3vfriswmgr  30207  signswch  34552  signstfvcl  34564
  Copyright terms: Public domain W3C validator