![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > diftpsn3 | Structured version Visualization version GIF version |
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
diftpsn3 | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjprsn 4739 | . . . . 5 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) | |
2 | disj3 4477 | . . . . 5 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶})) | |
3 | 1, 2 | sylib 218 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶})) |
4 | 3 | eqcomd 2746 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∖ {𝐶}) = {𝐴, 𝐵}) |
5 | difid 4398 | . . . 4 ⊢ ({𝐶} ∖ {𝐶}) = ∅ | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐶} ∖ {𝐶}) = ∅) |
7 | 4, 6 | uneq12d 4192 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵} ∪ ∅)) |
8 | df-tp 4653 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
9 | 8 | difeq1i 4145 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) |
10 | difundir 4310 | . . 3 ⊢ (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) | |
11 | 9, 10 | eqtr2i 2769 | . 2 ⊢ (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) |
12 | un0 4417 | . 2 ⊢ ({𝐴, 𝐵} ∪ ∅) = {𝐴, 𝐵} | |
13 | 7, 11, 12 | 3eqtr3g 2803 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2946 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 {cpr 4650 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-tp 4653 |
This theorem is referenced by: f13dfv 7310 nb3grprlem2 29416 cplgr3v 29470 frgr3v 30307 3vfriswmgr 30310 signswch 34538 signstfvcl 34550 |
Copyright terms: Public domain | W3C validator |