Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > diftpsn3 | Structured version Visualization version GIF version |
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
diftpsn3 | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjprsn 4650 | . . . . 5 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) | |
2 | disj3 4387 | . . . . 5 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶})) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶})) |
4 | 3 | eqcomd 2744 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∖ {𝐶}) = {𝐴, 𝐵}) |
5 | difid 4304 | . . . 4 ⊢ ({𝐶} ∖ {𝐶}) = ∅ | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐶} ∖ {𝐶}) = ∅) |
7 | 4, 6 | uneq12d 4098 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵} ∪ ∅)) |
8 | df-tp 4566 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
9 | 8 | difeq1i 4053 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) |
10 | difundir 4214 | . . 3 ⊢ (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) | |
11 | 9, 10 | eqtr2i 2767 | . 2 ⊢ (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) |
12 | un0 4324 | . 2 ⊢ ({𝐴, 𝐵} ∪ ∅) = {𝐴, 𝐵} | |
13 | 7, 11, 12 | 3eqtr3g 2801 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ≠ wne 2943 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 {cpr 4563 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-tp 4566 |
This theorem is referenced by: f13dfv 7146 nb3grprlem2 27748 cplgr3v 27802 frgr3v 28639 3vfriswmgr 28642 signswch 32540 signstfvcl 32552 |
Copyright terms: Public domain | W3C validator |