| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > diftpsn3 | Structured version Visualization version GIF version | ||
| Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| diftpsn3 | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjprsn 4690 | . . . . 5 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) | |
| 2 | disj3 4429 | . . . . 5 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶})) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶})) |
| 4 | 3 | eqcomd 2741 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∖ {𝐶}) = {𝐴, 𝐵}) |
| 5 | difid 4351 | . . . 4 ⊢ ({𝐶} ∖ {𝐶}) = ∅ | |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐶} ∖ {𝐶}) = ∅) |
| 7 | 4, 6 | uneq12d 4144 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵} ∪ ∅)) |
| 8 | df-tp 4606 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 9 | 8 | difeq1i 4097 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) |
| 10 | difundir 4266 | . . 3 ⊢ (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) | |
| 11 | 9, 10 | eqtr2i 2759 | . 2 ⊢ (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) |
| 12 | un0 4369 | . 2 ⊢ ({𝐴, 𝐵} ∪ ∅) = {𝐴, 𝐵} | |
| 13 | 7, 11, 12 | 3eqtr3g 2793 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2932 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 ∅c0 4308 {csn 4601 {cpr 4603 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-tp 4606 |
| This theorem is referenced by: f13dfv 7267 nb3grprlem2 29360 cplgr3v 29414 frgr3v 30256 3vfriswmgr 30259 signswch 34593 signstfvcl 34605 |
| Copyright terms: Public domain | W3C validator |