![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvtxupgrres | Structured version Visualization version GIF version |
Description: A universal vertex is universal in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.) |
Ref | Expression |
---|---|
nbupgruvtxres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbupgruvtxres.e | ⊢ 𝐸 = (Edg‘𝐺) |
nbupgruvtxres.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
nbupgruvtxres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
Ref | Expression |
---|---|
uvtxupgrres | ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbupgruvtxres.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | uvtxnbgr 29226 | . 2 ⊢ (𝐾 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) |
3 | nbupgruvtxres.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | nbupgruvtxres.f | . . . . . . 7 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
5 | nbupgruvtxres.s | . . . . . . 7 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
6 | 1, 3, 4, 5 | nbupgruvtxres 29233 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾}))) |
7 | 6 | imp 406 | . . . . 5 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾})) |
8 | difpr 4807 | . . . . . . 7 ⊢ (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾}) | |
9 | 1, 3, 4, 5 | upgrres1lem2 29137 | . . . . . . . . 9 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
10 | 9 | difeq1i 4116 | . . . . . . . 8 ⊢ ((Vtx‘𝑆) ∖ {𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾}) |
11 | 10 | a1i 11 | . . . . . . 7 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((Vtx‘𝑆) ∖ {𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})) |
12 | 8, 11 | eqtr4id 2787 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾})) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾})) |
14 | 7, 13 | eqtrd 2768 | . . . 4 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾})) |
15 | simpr 484 | . . . . . . 7 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → 𝐾 ∈ (𝑉 ∖ {𝑁})) | |
16 | 15, 9 | eleqtrrdi 2840 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → 𝐾 ∈ (Vtx‘𝑆)) |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → 𝐾 ∈ (Vtx‘𝑆)) |
18 | eqid 2728 | . . . . . 6 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
19 | 18 | uvtxnbgrb 29227 | . . . . 5 ⊢ (𝐾 ∈ (Vtx‘𝑆) → (𝐾 ∈ (UnivVtx‘𝑆) ↔ (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾}))) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝐾 ∈ (UnivVtx‘𝑆) ↔ (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾}))) |
21 | 14, 20 | mpbird 257 | . . 3 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → 𝐾 ∈ (UnivVtx‘𝑆)) |
22 | 21 | ex 412 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → 𝐾 ∈ (UnivVtx‘𝑆))) |
23 | 2, 22 | syl5 34 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∉ wnel 3043 {crab 3429 ∖ cdif 3944 {csn 4629 {cpr 4631 〈cop 4635 I cid 5575 ↾ cres 5680 ‘cfv 6548 (class class class)co 7420 Vtxcvtx 28822 Edgcedg 28873 UPGraphcupgr 28906 NeighbVtx cnbgr 29158 UnivVtxcuvtx 29211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-n0 12504 df-xnn0 12576 df-z 12590 df-uz 12854 df-fz 13518 df-hash 14323 df-vtx 28824 df-iedg 28825 df-edg 28874 df-upgr 28908 df-nbgr 29159 df-uvtx 29212 |
This theorem is referenced by: cusgrres 29275 |
Copyright terms: Public domain | W3C validator |