MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxupgrres Structured version   Visualization version   GIF version

Theorem uvtxupgrres 27501
Description: A universal vertex is universal in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
nbupgruvtxres.v 𝑉 = (Vtx‘𝐺)
nbupgruvtxres.e 𝐸 = (Edg‘𝐺)
nbupgruvtxres.f 𝐹 = {𝑒𝐸𝑁𝑒}
nbupgruvtxres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
uvtxupgrres (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐾   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem uvtxupgrres
StepHypRef Expression
1 nbupgruvtxres.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxnbgr 27493 . 2 (𝐾 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}))
3 nbupgruvtxres.e . . . . . . 7 𝐸 = (Edg‘𝐺)
4 nbupgruvtxres.f . . . . . . 7 𝐹 = {𝑒𝐸𝑁𝑒}
5 nbupgruvtxres.s . . . . . . 7 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
61, 3, 4, 5nbupgruvtxres 27500 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾})))
76imp 410 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾}))
8 difpr 4721 . . . . . . 7 (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})
91, 3, 4, 5upgrres1lem2 27404 . . . . . . . . 9 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
109difeq1i 4038 . . . . . . . 8 ((Vtx‘𝑆) ∖ {𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})
1110a1i 11 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((Vtx‘𝑆) ∖ {𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾}))
128, 11eqtr4id 2797 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾}))
1312adantr 484 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾}))
147, 13eqtrd 2777 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾}))
15 simpr 488 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → 𝐾 ∈ (𝑉 ∖ {𝑁}))
1615, 9eleqtrrdi 2849 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → 𝐾 ∈ (Vtx‘𝑆))
1716adantr 484 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → 𝐾 ∈ (Vtx‘𝑆))
18 eqid 2737 . . . . . 6 (Vtx‘𝑆) = (Vtx‘𝑆)
1918uvtxnbgrb 27494 . . . . 5 (𝐾 ∈ (Vtx‘𝑆) → (𝐾 ∈ (UnivVtx‘𝑆) ↔ (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾})))
2017, 19syl 17 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝐾 ∈ (UnivVtx‘𝑆) ↔ (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾})))
2114, 20mpbird 260 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → 𝐾 ∈ (UnivVtx‘𝑆))
2221ex 416 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → 𝐾 ∈ (UnivVtx‘𝑆)))
232, 22syl5 34 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wnel 3046  {crab 3065  cdif 3868  {csn 4546  {cpr 4548  cop 4552   I cid 5459  cres 5558  cfv 6385  (class class class)co 7218  Vtxcvtx 27092  Edgcedg 27143  UPGraphcupgr 27176   NeighbVtx cnbgr 27425  UnivVtxcuvtx 27478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-om 7650  df-1st 7766  df-2nd 7767  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-1o 8207  df-2o 8208  df-oadd 8211  df-er 8396  df-en 8632  df-dom 8633  df-sdom 8634  df-fin 8635  df-dju 9522  df-card 9560  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-nn 11836  df-2 11898  df-n0 12096  df-xnn0 12168  df-z 12182  df-uz 12444  df-fz 13101  df-hash 13902  df-vtx 27094  df-iedg 27095  df-edg 27144  df-upgr 27178  df-nbgr 27426  df-uvtx 27479
This theorem is referenced by:  cusgrres  27541
  Copyright terms: Public domain W3C validator