MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxupgrres Structured version   Visualization version   GIF version

Theorem uvtxupgrres 26538
Description: A universal vertex is universal in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
nbupgruvtxres.v 𝑉 = (Vtx‘𝐺)
nbupgruvtxres.e 𝐸 = (Edg‘𝐺)
nbupgruvtxres.f 𝐹 = {𝑒𝐸𝑁𝑒}
nbupgruvtxres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
uvtxupgrres (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐾   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem uvtxupgrres
StepHypRef Expression
1 nbupgruvtxres.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxnbgr 26530 . 2 (𝐾 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}))
3 nbupgruvtxres.e . . . . . . 7 𝐸 = (Edg‘𝐺)
4 nbupgruvtxres.f . . . . . . 7 𝐹 = {𝑒𝐸𝑁𝑒}
5 nbupgruvtxres.s . . . . . . 7 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
61, 3, 4, 5nbupgruvtxres 26537 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾})))
76imp 393 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾}))
81, 3, 4, 5upgrres1lem2 26426 . . . . . . . . 9 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
98difeq1i 3875 . . . . . . . 8 ((Vtx‘𝑆) ∖ {𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})
109a1i 11 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((Vtx‘𝑆) ∖ {𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾}))
11 difpr 4469 . . . . . . 7 (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})
1210, 11syl6reqr 2824 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾}))
1312adantr 466 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾}))
147, 13eqtrd 2805 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾}))
15 simpr 471 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → 𝐾 ∈ (𝑉 ∖ {𝑁}))
1615, 8syl6eleqr 2861 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → 𝐾 ∈ (Vtx‘𝑆))
1716adantr 466 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → 𝐾 ∈ (Vtx‘𝑆))
18 eqid 2771 . . . . . 6 (Vtx‘𝑆) = (Vtx‘𝑆)
1918uvtxnbgrb 26531 . . . . 5 (𝐾 ∈ (Vtx‘𝑆) → (𝐾 ∈ (UnivVtx‘𝑆) ↔ (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾})))
2017, 19syl 17 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝐾 ∈ (UnivVtx‘𝑆) ↔ (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾})))
2114, 20mpbird 247 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → 𝐾 ∈ (UnivVtx‘𝑆))
2221ex 397 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → 𝐾 ∈ (UnivVtx‘𝑆)))
232, 22syl5 34 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wnel 3046  {crab 3065  cdif 3720  {csn 4316  {cpr 4318  cop 4322   I cid 5156  cres 5251  cfv 6031  (class class class)co 6793  Vtxcvtx 26095  Edgcedg 26160  UPGraphcupgr 26196   NeighbVtx cnbgr 26447  UnivVtxcuvtx 26510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-fz 12534  df-hash 13322  df-vtx 26097  df-iedg 26098  df-edg 26161  df-upgr 26198  df-nbgr 26448  df-uvtx 26511
This theorem is referenced by:  cusgrres  26579
  Copyright terms: Public domain W3C validator