![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvtxupgrres | Structured version Visualization version GIF version |
Description: A universal vertex is universal in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.) |
Ref | Expression |
---|---|
nbupgruvtxres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbupgruvtxres.e | ⊢ 𝐸 = (Edg‘𝐺) |
nbupgruvtxres.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
nbupgruvtxres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
Ref | Expression |
---|---|
uvtxupgrres | ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbupgruvtxres.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | uvtxnbgr 26530 | . 2 ⊢ (𝐾 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) |
3 | nbupgruvtxres.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | nbupgruvtxres.f | . . . . . . 7 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
5 | nbupgruvtxres.s | . . . . . . 7 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
6 | 1, 3, 4, 5 | nbupgruvtxres 26537 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾}))) |
7 | 6 | imp 393 | . . . . 5 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾})) |
8 | 1, 3, 4, 5 | upgrres1lem2 26426 | . . . . . . . . 9 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
9 | 8 | difeq1i 3875 | . . . . . . . 8 ⊢ ((Vtx‘𝑆) ∖ {𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾}) |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((Vtx‘𝑆) ∖ {𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})) |
11 | difpr 4469 | . . . . . . 7 ⊢ (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾}) | |
12 | 10, 11 | syl6reqr 2824 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾})) |
13 | 12 | adantr 466 | . . . . 5 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾})) |
14 | 7, 13 | eqtrd 2805 | . . . 4 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾})) |
15 | simpr 471 | . . . . . . 7 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → 𝐾 ∈ (𝑉 ∖ {𝑁})) | |
16 | 15, 8 | syl6eleqr 2861 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → 𝐾 ∈ (Vtx‘𝑆)) |
17 | 16 | adantr 466 | . . . . 5 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → 𝐾 ∈ (Vtx‘𝑆)) |
18 | eqid 2771 | . . . . . 6 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
19 | 18 | uvtxnbgrb 26531 | . . . . 5 ⊢ (𝐾 ∈ (Vtx‘𝑆) → (𝐾 ∈ (UnivVtx‘𝑆) ↔ (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾}))) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝐾 ∈ (UnivVtx‘𝑆) ↔ (𝑆 NeighbVtx 𝐾) = ((Vtx‘𝑆) ∖ {𝐾}))) |
21 | 14, 20 | mpbird 247 | . . 3 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → 𝐾 ∈ (UnivVtx‘𝑆)) |
22 | 21 | ex 397 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → 𝐾 ∈ (UnivVtx‘𝑆))) |
23 | 2, 22 | syl5 34 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝐾 ∈ (UnivVtx‘𝐺) → 𝐾 ∈ (UnivVtx‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∉ wnel 3046 {crab 3065 ∖ cdif 3720 {csn 4316 {cpr 4318 〈cop 4322 I cid 5156 ↾ cres 5251 ‘cfv 6031 (class class class)co 6793 Vtxcvtx 26095 Edgcedg 26160 UPGraphcupgr 26196 NeighbVtx cnbgr 26447 UnivVtxcuvtx 26510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-fz 12534 df-hash 13322 df-vtx 26097 df-iedg 26098 df-edg 26161 df-upgr 26198 df-nbgr 26448 df-uvtx 26511 |
This theorem is referenced by: cusgrres 26579 |
Copyright terms: Public domain | W3C validator |