MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrssvwo2 Structured version   Visualization version   GIF version

Theorem nbgrssvwo2 29379
Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself and a class 𝑀 which is not a neighbor of 𝑋. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrssovtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrssvwo2 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑀, 𝑋}))

Proof of Theorem nbgrssvwo2
StepHypRef Expression
1 nbgrssovtx.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrssovtx 29378 . . 3 (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})
3 df-nel 3047 . . . . 5 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑋))
4 disjsn 4711 . . . . 5 (((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑋))
53, 4sylbb2 238 . . . 4 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → ((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅)
6 reldisj 4453 . . . 4 ((𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) → (((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅ ↔ (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀})))
75, 6imbitrid 244 . . 3 ((𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) → (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀})))
82, 7ax-mp 5 . 2 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀}))
9 prcom 4732 . . . 4 {𝑀, 𝑋} = {𝑋, 𝑀}
109difeq2i 4123 . . 3 (𝑉 ∖ {𝑀, 𝑋}) = (𝑉 ∖ {𝑋, 𝑀})
11 difpr 4803 . . 3 (𝑉 ∖ {𝑋, 𝑀}) = ((𝑉 ∖ {𝑋}) ∖ {𝑀})
1210, 11eqtri 2765 . 2 (𝑉 ∖ {𝑀, 𝑋}) = ((𝑉 ∖ {𝑋}) ∖ {𝑀})
138, 12sseqtrrdi 4025 1 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑀, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  wnel 3046  cdif 3948  cin 3950  wss 3951  c0 4333  {csn 4626  {cpr 4628  cfv 6561  (class class class)co 7431  Vtxcvtx 29013   NeighbVtx cnbgr 29349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-nbgr 29350
This theorem is referenced by:  nbfusgrlevtxm2  29395
  Copyright terms: Public domain W3C validator