MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrssvwo2 Structured version   Visualization version   GIF version

Theorem nbgrssvwo2 29341
Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself and a class 𝑀 which is not a neighbor of 𝑋. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrssovtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrssvwo2 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑀, 𝑋}))

Proof of Theorem nbgrssvwo2
StepHypRef Expression
1 nbgrssovtx.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrssovtx 29340 . . 3 (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})
3 df-nel 3037 . . . . 5 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑋))
4 disjsn 4687 . . . . 5 (((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑋))
53, 4sylbb2 238 . . . 4 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → ((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅)
6 reldisj 4428 . . . 4 ((𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) → (((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅ ↔ (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀})))
75, 6imbitrid 244 . . 3 ((𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) → (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀})))
82, 7ax-mp 5 . 2 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀}))
9 prcom 4708 . . . 4 {𝑀, 𝑋} = {𝑋, 𝑀}
109difeq2i 4098 . . 3 (𝑉 ∖ {𝑀, 𝑋}) = (𝑉 ∖ {𝑋, 𝑀})
11 difpr 4779 . . 3 (𝑉 ∖ {𝑋, 𝑀}) = ((𝑉 ∖ {𝑋}) ∖ {𝑀})
1210, 11eqtri 2758 . 2 (𝑉 ∖ {𝑀, 𝑋}) = ((𝑉 ∖ {𝑋}) ∖ {𝑀})
138, 12sseqtrrdi 4000 1 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑀, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  wnel 3036  cdif 3923  cin 3925  wss 3926  c0 4308  {csn 4601  {cpr 4603  cfv 6531  (class class class)co 7405  Vtxcvtx 28975   NeighbVtx cnbgr 29311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-nbgr 29312
This theorem is referenced by:  nbfusgrlevtxm2  29357
  Copyright terms: Public domain W3C validator