Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbgrssvwo2 | Structured version Visualization version GIF version |
Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself and a class 𝑀 which is not a neighbor of 𝑋. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrssovtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrssvwo2 | ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑀, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrssovtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | nbgrssovtx 27449 | . . 3 ⊢ (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) |
3 | df-nel 3047 | . . . . 5 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑋)) | |
4 | disjsn 4627 | . . . . 5 ⊢ (((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑋)) | |
5 | 3, 4 | sylbb2 241 | . . . 4 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → ((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅) |
6 | reldisj 4366 | . . . 4 ⊢ ((𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) → (((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅ ↔ (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀}))) | |
7 | 5, 6 | syl5ib 247 | . . 3 ⊢ ((𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) → (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀}))) |
8 | 2, 7 | ax-mp 5 | . 2 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀})) |
9 | prcom 4648 | . . . 4 ⊢ {𝑀, 𝑋} = {𝑋, 𝑀} | |
10 | 9 | difeq2i 4034 | . . 3 ⊢ (𝑉 ∖ {𝑀, 𝑋}) = (𝑉 ∖ {𝑋, 𝑀}) |
11 | difpr 4716 | . . 3 ⊢ (𝑉 ∖ {𝑋, 𝑀}) = ((𝑉 ∖ {𝑋}) ∖ {𝑀}) | |
12 | 10, 11 | eqtri 2765 | . 2 ⊢ (𝑉 ∖ {𝑀, 𝑋}) = ((𝑉 ∖ {𝑋}) ∖ {𝑀}) |
13 | 8, 12 | sseqtrrdi 3952 | 1 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑀, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1543 ∈ wcel 2110 ∉ wnel 3046 ∖ cdif 3863 ∩ cin 3865 ⊆ wss 3866 ∅c0 4237 {csn 4541 {cpr 4543 ‘cfv 6380 (class class class)co 7213 Vtxcvtx 27087 NeighbVtx cnbgr 27420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-nbgr 27421 |
This theorem is referenced by: nbfusgrlevtxm2 27466 |
Copyright terms: Public domain | W3C validator |