MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrssvwo2 Structured version   Visualization version   GIF version

Theorem nbgrssvwo2 27450
Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself and a class 𝑀 which is not a neighbor of 𝑋. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.)
Hypothesis
Ref Expression
nbgrssovtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrssvwo2 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑀, 𝑋}))

Proof of Theorem nbgrssvwo2
StepHypRef Expression
1 nbgrssovtx.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrssovtx 27449 . . 3 (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋})
3 df-nel 3047 . . . . 5 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑋))
4 disjsn 4627 . . . . 5 (((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑋))
53, 4sylbb2 241 . . . 4 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → ((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅)
6 reldisj 4366 . . . 4 ((𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) → (((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅ ↔ (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀})))
75, 6syl5ib 247 . . 3 ((𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) → (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀})))
82, 7ax-mp 5 . 2 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀}))
9 prcom 4648 . . . 4 {𝑀, 𝑋} = {𝑋, 𝑀}
109difeq2i 4034 . . 3 (𝑉 ∖ {𝑀, 𝑋}) = (𝑉 ∖ {𝑋, 𝑀})
11 difpr 4716 . . 3 (𝑉 ∖ {𝑋, 𝑀}) = ((𝑉 ∖ {𝑋}) ∖ {𝑀})
1210, 11eqtri 2765 . 2 (𝑉 ∖ {𝑀, 𝑋}) = ((𝑉 ∖ {𝑋}) ∖ {𝑀})
138, 12sseqtrrdi 3952 1 (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑀, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2110  wnel 3046  cdif 3863  cin 3865  wss 3866  c0 4237  {csn 4541  {cpr 4543  cfv 6380  (class class class)co 7213  Vtxcvtx 27087   NeighbVtx cnbgr 27420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-nbgr 27421
This theorem is referenced by:  nbfusgrlevtxm2  27466
  Copyright terms: Public domain W3C validator