Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashdifpr | Structured version Visualization version GIF version |
Description: The size of the difference of a finite set and a proper pair of its elements is the set's size minus 2. (Contributed by AV, 16-Dec-2020.) |
Ref | Expression |
---|---|
hashdifpr | ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difpr 4736 | . . . 4 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})) |
3 | 2 | fveq2d 6778 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶}))) |
4 | diffi 8962 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝐵}) ∈ Fin) | |
5 | necom 2997 | . . . . . . . 8 ⊢ (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵) | |
6 | 5 | biimpi 215 | . . . . . . 7 ⊢ (𝐵 ≠ 𝐶 → 𝐶 ≠ 𝐵) |
7 | 6 | anim2i 617 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶) → (𝐶 ∈ 𝐴 ∧ 𝐶 ≠ 𝐵)) |
8 | 7 | 3adant1 1129 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶) → (𝐶 ∈ 𝐴 ∧ 𝐶 ≠ 𝐵)) |
9 | 8 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (𝐶 ∈ 𝐴 ∧ 𝐶 ≠ 𝐵)) |
10 | eldifsn 4720 | . . . 4 ⊢ (𝐶 ∈ (𝐴 ∖ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ≠ 𝐵)) | |
11 | 9, 10 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → 𝐶 ∈ (𝐴 ∖ {𝐵})) |
12 | hashdifsn 14129 | . . 3 ⊢ (((𝐴 ∖ {𝐵}) ∈ Fin ∧ 𝐶 ∈ (𝐴 ∖ {𝐵})) → (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})) = ((♯‘(𝐴 ∖ {𝐵})) − 1)) | |
13 | 4, 11, 12 | syl2an2r 682 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})) = ((♯‘(𝐴 ∖ {𝐵})) − 1)) |
14 | hashdifsn 14129 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) | |
15 | 14 | 3ad2antr1 1187 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) |
16 | 15 | oveq1d 7290 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → ((♯‘(𝐴 ∖ {𝐵})) − 1) = (((♯‘𝐴) − 1) − 1)) |
17 | hashcl 14071 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
18 | 17 | nn0cnd 12295 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ) |
19 | sub1m1 12225 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℂ → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2)) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝐴 ∈ Fin → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2)) |
21 | 20 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2)) |
22 | 16, 21 | eqtrd 2778 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → ((♯‘(𝐴 ∖ {𝐵})) − 1) = ((♯‘𝐴) − 2)) |
23 | 3, 13, 22 | 3eqtrd 2782 | 1 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 {csn 4561 {cpr 4563 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℂcc 10869 1c1 10872 − cmin 11205 2c2 12028 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 |
This theorem is referenced by: nbfusgrlevtxm2 27745 |
Copyright terms: Public domain | W3C validator |