Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  postc Structured version   Visualization version   GIF version

Theorem postc 49694
Description: The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
postc.c (𝜑𝐶 = (ProsetToCat‘𝐾))
postc.k (𝜑𝐾 ∈ Proset )
postc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
postc (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 (𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem postc
StepHypRef Expression
1 postc.c . . . 4 (𝜑𝐶 = (ProsetToCat‘𝐾))
2 postc.k . . . 4 (𝜑𝐾 ∈ Proset )
31, 2prstcprs 49685 . . 3 (𝜑𝐶 ∈ Proset )
4 postc.b . . . . 5 𝐵 = (Base‘𝐶)
5 eqid 2733 . . . . 5 (le‘𝐶) = (le‘𝐶)
64, 5ispos2 18223 . . . 4 (𝐶 ∈ Poset ↔ (𝐶 ∈ Proset ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
76baib 535 . . 3 (𝐶 ∈ Proset → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
83, 7syl 17 . 2 (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
91adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 = (ProsetToCat‘𝐾))
102adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ Proset )
119, 10prstcthin 49686 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 ∈ ThinCat)
12 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
13 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
14 eqid 2733 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
1511, 4, 12, 13, 14thinccic 49596 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ≃𝑐𝐶)𝑦 ↔ ((𝑥(Hom ‘𝐶)𝑦) ≠ ∅ ∧ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅)))
16 eqidd 2734 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (le‘𝐶) = (le‘𝐶))
17 eqidd 2734 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (Hom ‘𝐶) = (Hom ‘𝐶))
1812, 4eleqtrdi 2843 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐶))
1913, 4eleqtrdi 2843 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐶))
209, 10, 16, 17, 18, 19prstchom 49687 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(le‘𝐶)𝑦 ↔ (𝑥(Hom ‘𝐶)𝑦) ≠ ∅))
219, 10, 16, 17, 19, 18prstchom 49687 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(le‘𝐶)𝑥 ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
2220, 21anbi12d 632 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) ↔ ((𝑥(Hom ‘𝐶)𝑦) ≠ ∅ ∧ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅)))
2315, 22bitr4d 282 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ≃𝑐𝐶)𝑦 ↔ (𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥)))
2423imbi1d 341 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦) ↔ ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
25242ralbidva 3195 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
268, 25bitr4d 282 1 (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 (𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  c0 4282   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  Hom chom 17174  𝑐 ccic 17704   Proset cproset 18200  Posetcpo 18215  ProsetToCatcprstc 49674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ple 17183  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-sect 17656  df-inv 17657  df-iso 17658  df-cic 17705  df-proset 18202  df-poset 18221  df-thinc 49543  df-prstc 49675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator