![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > postc | Structured version Visualization version GIF version |
Description: The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
postc.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
postc.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
postc.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
postc | ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | postc.c | . . . 4 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
2 | postc.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
3 | 1, 2 | prstcprs 49001 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Proset ) |
4 | postc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | eqid 2737 | . . . . 5 ⊢ (le‘𝐶) = (le‘𝐶) | |
6 | 4, 5 | ispos2 18382 | . . . 4 ⊢ (𝐶 ∈ Poset ↔ (𝐶 ∈ Proset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
7 | 6 | baib 535 | . . 3 ⊢ (𝐶 ∈ Proset → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
8 | 3, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
9 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = (ProsetToCat‘𝐾)) |
10 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ Proset ) |
11 | 9, 10 | prstcthin 49002 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ ThinCat) |
12 | simprl 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
13 | simprr 773 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
14 | eqid 2737 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
15 | 11, 4, 12, 13, 14 | thinccic 48987 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ≃𝑐 ‘𝐶)𝑦 ↔ ((𝑥(Hom ‘𝐶)𝑦) ≠ ∅ ∧ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))) |
16 | eqidd 2738 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (le‘𝐶) = (le‘𝐶)) | |
17 | eqidd 2738 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (Hom ‘𝐶) = (Hom ‘𝐶)) | |
18 | 12, 4 | eleqtrdi 2851 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐶)) |
19 | 13, 4 | eleqtrdi 2851 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ (Base‘𝐶)) |
20 | 9, 10, 16, 17, 18, 19 | prstchom 49003 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(le‘𝐶)𝑦 ↔ (𝑥(Hom ‘𝐶)𝑦) ≠ ∅)) |
21 | 9, 10, 16, 17, 19, 18 | prstchom 49003 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦(le‘𝐶)𝑥 ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅)) |
22 | 20, 21 | anbi12d 632 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) ↔ ((𝑥(Hom ‘𝐶)𝑦) ≠ ∅ ∧ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))) |
23 | 15, 22 | bitr4d 282 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ≃𝑐 ‘𝐶)𝑦 ↔ (𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥))) |
24 | 23 | imbi1d 341 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦) ↔ ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
25 | 24 | 2ralbidva 3219 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
26 | 8, 25 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∅c0 4342 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 lecple 17314 Hom chom 17318 ≃𝑐 ccic 17852 Proset cproset 18359 Posetcpo 18374 ProsetToCatcprstc 48988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ple 17327 df-hom 17331 df-cco 17332 df-cat 17722 df-cid 17723 df-sect 17804 df-inv 17805 df-iso 17806 df-cic 17853 df-proset 18361 df-poset 18380 df-thinc 48945 df-prstc 48989 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |