Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  postc Structured version   Visualization version   GIF version

Theorem postc 46249
Description: The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
postc.c (𝜑𝐶 = (ProsetToCat‘𝐾))
postc.k (𝜑𝐾 ∈ Proset )
postc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
postc (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 (𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem postc
StepHypRef Expression
1 postc.c . . . 4 (𝜑𝐶 = (ProsetToCat‘𝐾))
2 postc.k . . . 4 (𝜑𝐾 ∈ Proset )
31, 2prstcprs 46242 . . 3 (𝜑𝐶 ∈ Proset )
4 postc.b . . . . 5 𝐵 = (Base‘𝐶)
5 eqid 2738 . . . . 5 (le‘𝐶) = (le‘𝐶)
64, 5ispos2 17948 . . . 4 (𝐶 ∈ Poset ↔ (𝐶 ∈ Proset ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
76baib 535 . . 3 (𝐶 ∈ Proset → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
83, 7syl 17 . 2 (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
91adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 = (ProsetToCat‘𝐾))
102adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ Proset )
119, 10prstcthin 46243 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 ∈ ThinCat)
12 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
13 simprr 769 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
14 eqid 2738 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
1511, 4, 12, 13, 14thinccic 46230 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ≃𝑐𝐶)𝑦 ↔ ((𝑥(Hom ‘𝐶)𝑦) ≠ ∅ ∧ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅)))
16 eqidd 2739 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (le‘𝐶) = (le‘𝐶))
17 eqidd 2739 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (Hom ‘𝐶) = (Hom ‘𝐶))
1812, 4eleqtrdi 2849 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐶))
1913, 4eleqtrdi 2849 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐶))
209, 10, 16, 17, 18, 19prstchom 46244 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(le‘𝐶)𝑦 ↔ (𝑥(Hom ‘𝐶)𝑦) ≠ ∅))
219, 10, 16, 17, 19, 18prstchom 46244 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(le‘𝐶)𝑥 ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
2220, 21anbi12d 630 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) ↔ ((𝑥(Hom ‘𝐶)𝑦) ≠ ∅ ∧ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅)))
2315, 22bitr4d 281 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ≃𝑐𝐶)𝑦 ↔ (𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥)))
2423imbi1d 341 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦) ↔ ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
25242ralbidva 3121 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
268, 25bitr4d 281 1 (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 (𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  Hom chom 16899  𝑐 ccic 17424   Proset cproset 17926  Posetcpo 17940  ProsetToCatcprstc 46231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ple 16908  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-sect 17376  df-inv 17377  df-iso 17378  df-cic 17425  df-proset 17928  df-poset 17946  df-thinc 46189  df-prstc 46232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator