Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > postc | Structured version Visualization version GIF version |
Description: The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
postc.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
postc.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
postc.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
postc | ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | postc.c | . . . 4 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
2 | postc.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
3 | 1, 2 | prstcprs 46242 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Proset ) |
4 | postc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | eqid 2738 | . . . . 5 ⊢ (le‘𝐶) = (le‘𝐶) | |
6 | 4, 5 | ispos2 17948 | . . . 4 ⊢ (𝐶 ∈ Poset ↔ (𝐶 ∈ Proset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
7 | 6 | baib 535 | . . 3 ⊢ (𝐶 ∈ Proset → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
8 | 3, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
9 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = (ProsetToCat‘𝐾)) |
10 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ Proset ) |
11 | 9, 10 | prstcthin 46243 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ ThinCat) |
12 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
13 | simprr 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
14 | eqid 2738 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
15 | 11, 4, 12, 13, 14 | thinccic 46230 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ≃𝑐 ‘𝐶)𝑦 ↔ ((𝑥(Hom ‘𝐶)𝑦) ≠ ∅ ∧ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))) |
16 | eqidd 2739 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (le‘𝐶) = (le‘𝐶)) | |
17 | eqidd 2739 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (Hom ‘𝐶) = (Hom ‘𝐶)) | |
18 | 12, 4 | eleqtrdi 2849 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐶)) |
19 | 13, 4 | eleqtrdi 2849 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ (Base‘𝐶)) |
20 | 9, 10, 16, 17, 18, 19 | prstchom 46244 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(le‘𝐶)𝑦 ↔ (𝑥(Hom ‘𝐶)𝑦) ≠ ∅)) |
21 | 9, 10, 16, 17, 19, 18 | prstchom 46244 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦(le‘𝐶)𝑥 ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅)) |
22 | 20, 21 | anbi12d 630 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) ↔ ((𝑥(Hom ‘𝐶)𝑦) ≠ ∅ ∧ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))) |
23 | 15, 22 | bitr4d 281 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ≃𝑐 ‘𝐶)𝑦 ↔ (𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥))) |
24 | 23 | imbi1d 341 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦) ↔ ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
25 | 24 | 2ralbidva 3121 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
26 | 8, 25 | bitr4d 281 | 1 ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 Hom chom 16899 ≃𝑐 ccic 17424 Proset cproset 17926 Posetcpo 17940 ProsetToCatcprstc 46231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ple 16908 df-hom 16912 df-cco 16913 df-cat 17294 df-cid 17295 df-sect 17376 df-inv 17377 df-iso 17378 df-cic 17425 df-proset 17928 df-poset 17946 df-thinc 46189 df-prstc 46232 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |