Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  postc Structured version   Visualization version   GIF version

Theorem postc 49555
Description: The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
postc.c (𝜑𝐶 = (ProsetToCat‘𝐾))
postc.k (𝜑𝐾 ∈ Proset )
postc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
postc (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 (𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem postc
StepHypRef Expression
1 postc.c . . . 4 (𝜑𝐶 = (ProsetToCat‘𝐾))
2 postc.k . . . 4 (𝜑𝐾 ∈ Proset )
31, 2prstcprs 49546 . . 3 (𝜑𝐶 ∈ Proset )
4 postc.b . . . . 5 𝐵 = (Base‘𝐶)
5 eqid 2729 . . . . 5 (le‘𝐶) = (le‘𝐶)
64, 5ispos2 18239 . . . 4 (𝐶 ∈ Poset ↔ (𝐶 ∈ Proset ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
76baib 535 . . 3 (𝐶 ∈ Proset → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
83, 7syl 17 . 2 (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
91adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 = (ProsetToCat‘𝐾))
102adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ Proset )
119, 10prstcthin 49547 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶 ∈ ThinCat)
12 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
13 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
14 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
1511, 4, 12, 13, 14thinccic 49457 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ≃𝑐𝐶)𝑦 ↔ ((𝑥(Hom ‘𝐶)𝑦) ≠ ∅ ∧ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅)))
16 eqidd 2730 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (le‘𝐶) = (le‘𝐶))
17 eqidd 2730 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (Hom ‘𝐶) = (Hom ‘𝐶))
1812, 4eleqtrdi 2838 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐶))
1913, 4eleqtrdi 2838 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐶))
209, 10, 16, 17, 18, 19prstchom 49548 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(le‘𝐶)𝑦 ↔ (𝑥(Hom ‘𝐶)𝑦) ≠ ∅))
219, 10, 16, 17, 19, 18prstchom 49548 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(le‘𝐶)𝑥 ↔ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅))
2220, 21anbi12d 632 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) ↔ ((𝑥(Hom ‘𝐶)𝑦) ≠ ∅ ∧ (𝑦(Hom ‘𝐶)𝑥) ≠ ∅)))
2315, 22bitr4d 282 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ≃𝑐𝐶)𝑦 ↔ (𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥)))
2423imbi1d 341 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦) ↔ ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
25242ralbidva 3191 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
268, 25bitr4d 282 1 (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 (𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  Hom chom 17190  𝑐 ccic 17720   Proset cproset 18216  Posetcpo 18231  ProsetToCatcprstc 49535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ple 17199  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-sect 17672  df-inv 17673  df-iso 17674  df-cic 17721  df-proset 18218  df-poset 18237  df-thinc 49404  df-prstc 49536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator