MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjwrdpfx Structured version   Visualization version   GIF version

Theorem disjwrdpfx 14341
Description: Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word 𝑊 is called an "extension" of a word 𝑃 if 𝑃 is a prefix of 𝑊. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
disjwrdpfx Disj 𝑦𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
Distinct variable groups:   𝑦,𝑁   𝑥,𝑉   𝑥,𝑦
Allowed substitution hints:   𝑁(𝑥)   𝑉(𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem disjwrdpfx
StepHypRef Expression
1 invdisjrab 5056 1 Disj 𝑦𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {crab 3067  Disj wdisj 5035  (class class class)co 7255  Word cword 14145   prefix cpfx 14311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-disj 5036
This theorem is referenced by:  disjxwwlksn  28170  disjxwwlkn  28179
  Copyright terms: Public domain W3C validator