MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjwrdpfx Structured version   Visualization version   GIF version

Theorem disjwrdpfx 14750
Description: Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word 𝑊 is called an "extension" of a word 𝑃 if 𝑃 is a prefix of 𝑊. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
disjwrdpfx Disj 𝑦𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
Distinct variable groups:   𝑦,𝑁   𝑥,𝑉   𝑥,𝑦
Allowed substitution hints:   𝑁(𝑥)   𝑉(𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem disjwrdpfx
StepHypRef Expression
1 invdisjrab 5153 1 Disj 𝑦𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {crab 3443  Disj wdisj 5133  (class class class)co 7450  Word cword 14564   prefix cpfx 14720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rmo 3388  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-disj 5134
This theorem is referenced by:  disjxwwlksn  29939  disjxwwlkn  29948
  Copyright terms: Public domain W3C validator