| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjwrdpfx | Structured version Visualization version GIF version | ||
| Description: Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word 𝑊 is called an "extension" of a word 𝑃 if 𝑃 is a prefix of 𝑊. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.) |
| Ref | Expression |
|---|---|
| disjwrdpfx | ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invdisjrab 5094 | 1 ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {crab 3405 Disj wdisj 5074 (class class class)co 7387 Word cword 14478 prefix cpfx 14635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rmo 3354 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-disj 5075 |
| This theorem is referenced by: disjxwwlksn 29834 disjxwwlkn 29843 |
| Copyright terms: Public domain | W3C validator |