Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjwrdpfx | Structured version Visualization version GIF version |
Description: Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word 𝑊 is called an "extension" of a word 𝑃 if 𝑃 is a prefix of 𝑊. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.) |
Ref | Expression |
---|---|
disjwrdpfx | ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invdisjrab 5056 | 1 ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {crab 3067 Disj wdisj 5035 (class class class)co 7255 Word cword 14145 prefix cpfx 14311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-disj 5036 |
This theorem is referenced by: disjxwwlksn 28170 disjxwwlkn 28179 |
Copyright terms: Public domain | W3C validator |