| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjwrdpfx | Structured version Visualization version GIF version | ||
| Description: Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word 𝑊 is called an "extension" of a word 𝑃 if 𝑃 is a prefix of 𝑊. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.) |
| Ref | Expression |
|---|---|
| disjwrdpfx | ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invdisjrab 5080 | 1 ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {crab 3396 Disj wdisj 5060 (class class class)co 7352 Word cword 14422 prefix cpfx 14580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rmo 3347 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-disj 5061 |
| This theorem is referenced by: disjxwwlksn 29884 disjxwwlkn 29893 |
| Copyright terms: Public domain | W3C validator |