| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjwrdpfx | Structured version Visualization version GIF version | ||
| Description: Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word 𝑊 is called an "extension" of a word 𝑃 if 𝑃 is a prefix of 𝑊. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.) |
| Ref | Expression |
|---|---|
| disjwrdpfx | ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invdisjrab 5110 | 1 ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {crab 3419 Disj wdisj 5090 (class class class)co 7413 Word cword 14534 prefix cpfx 14690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rmo 3363 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-disj 5091 |
| This theorem is referenced by: disjxwwlksn 29852 disjxwwlkn 29861 |
| Copyright terms: Public domain | W3C validator |