MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjwrdpfx Structured version   Visualization version   GIF version

Theorem disjwrdpfx 14609
Description: Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word 𝑊 is called an "extension" of a word 𝑃 if 𝑃 is a prefix of 𝑊. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
disjwrdpfx Disj 𝑦𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
Distinct variable groups:   𝑦,𝑁   𝑥,𝑉   𝑥,𝑦
Allowed substitution hints:   𝑁(𝑥)   𝑉(𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem disjwrdpfx
StepHypRef Expression
1 invdisjrab 5080 1 Disj 𝑦𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {crab 3396  Disj wdisj 5060  (class class class)co 7352  Word cword 14422   prefix cpfx 14580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rmo 3347  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-disj 5061
This theorem is referenced by:  disjxwwlksn  29884  disjxwwlkn  29893
  Copyright terms: Public domain W3C validator