Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjwrdpfx | Structured version Visualization version GIF version |
Description: Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word 𝑊 is called an "extension" of a word 𝑃 if 𝑃 is a prefix of 𝑊. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.) |
Ref | Expression |
---|---|
disjwrdpfx | ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invdisjrab 5016 | 1 ⊢ Disj 𝑦 ∈ 𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 {crab 3057 Disj wdisj 4995 (class class class)co 7170 Word cword 13955 prefix cpfx 14121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-disj 4996 |
This theorem is referenced by: disjxwwlksn 27842 disjxwwlkn 27851 |
Copyright terms: Public domain | W3C validator |