MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdisjrab Structured version   Visualization version   GIF version

Theorem invdisjrab 5097
Description: The restricted class abstractions {𝑥𝐵𝐶 = 𝑦} for distinct 𝑦𝐴 are disjoint. (Contributed by AV, 6-May-2020.) (Proof shortened by GG, 26-Jan-2024.)
Assertion
Ref Expression
invdisjrab Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Distinct variable groups:   𝑥,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem invdisjrab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2892 . . . . 5 𝑥𝑧
2 nfcv 2892 . . . . 5 𝑥𝐵
3 nfcsb1v 3889 . . . . . 6 𝑥𝑧 / 𝑥𝐶
43nfeq1 2908 . . . . 5 𝑥𝑧 / 𝑥𝐶 = 𝑦
5 csbeq1a 3879 . . . . . 6 (𝑥 = 𝑧𝐶 = 𝑧 / 𝑥𝐶)
65eqeq1d 2732 . . . . 5 (𝑥 = 𝑧 → (𝐶 = 𝑦𝑧 / 𝑥𝐶 = 𝑦))
71, 2, 4, 6elrabf 3658 . . . 4 (𝑧 ∈ {𝑥𝐵𝐶 = 𝑦} ↔ (𝑧𝐵𝑧 / 𝑥𝐶 = 𝑦))
8 simprr 772 . . . 4 ((𝑦𝐴 ∧ (𝑧𝐵𝑧 / 𝑥𝐶 = 𝑦)) → 𝑧 / 𝑥𝐶 = 𝑦)
97, 8sylan2b 594 . . 3 ((𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}) → 𝑧 / 𝑥𝐶 = 𝑦)
109rgen2 3178 . 2 𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦
11 invdisj 5096 . 2 (∀𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦})
1210, 11ax-mp 5 1 Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  csb 3865  Disj wdisj 5077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rmo 3356  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-disj 5078
This theorem is referenced by:  disjwrdpfx  14672
  Copyright terms: Public domain W3C validator