Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invdisjrab | Structured version Visualization version GIF version |
Description: The restricted class abstractions {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} for distinct 𝑦 ∈ 𝐴 are disjoint. (Contributed by AV, 6-May-2020.) |
Ref | Expression |
---|---|
invdisjrab | ⊢ Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
2 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
3 | nfcsb1v 3853 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐶 | |
4 | 3 | nfeq1 2921 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐶 = 𝑦 |
5 | csbeq1a 3842 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → 𝐶 = ⦋𝑧 / 𝑥⦌𝐶) | |
6 | 5 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝐶 = 𝑦 ↔ ⦋𝑧 / 𝑥⦌𝐶 = 𝑦)) |
7 | 1, 2, 4, 6 | elrabf 3613 | . . . . 5 ⊢ (𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} ↔ (𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑥⦌𝐶 = 𝑦)) |
8 | ax-1 6 | . . . . 5 ⊢ (⦋𝑧 / 𝑥⦌𝐶 = 𝑦 → (𝑦 ∈ 𝐴 → ⦋𝑧 / 𝑥⦌𝐶 = 𝑦)) | |
9 | 7, 8 | simplbiim 504 | . . . 4 ⊢ (𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} → (𝑦 ∈ 𝐴 → ⦋𝑧 / 𝑥⦌𝐶 = 𝑦)) |
10 | 9 | impcom 407 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}) → ⦋𝑧 / 𝑥⦌𝐶 = 𝑦) |
11 | 10 | rgen2 3126 | . 2 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}⦋𝑧 / 𝑥⦌𝐶 = 𝑦 |
12 | invdisj 5054 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}⦋𝑧 / 𝑥⦌𝐶 = 𝑦 → Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦}) | |
13 | 11, 12 | ax-mp 5 | 1 ⊢ Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⦋csb 3828 Disj wdisj 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-disj 5036 |
This theorem is referenced by: disjwrdpfx 14341 |
Copyright terms: Public domain | W3C validator |