MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdisjrab Structured version   Visualization version   GIF version

Theorem invdisjrab 5016
Description: The restricted class abstractions {𝑥𝐵𝐶 = 𝑦} for distinct 𝑦𝐴 are disjoint. (Contributed by AV, 6-May-2020.)
Assertion
Ref Expression
invdisjrab Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Distinct variable groups:   𝑥,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem invdisjrab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2899 . . . . . 6 𝑥𝑧
2 nfcv 2899 . . . . . 6 𝑥𝐵
3 nfcsb1v 3814 . . . . . . 7 𝑥𝑧 / 𝑥𝐶
43nfeq1 2914 . . . . . 6 𝑥𝑧 / 𝑥𝐶 = 𝑦
5 csbeq1a 3804 . . . . . . 7 (𝑥 = 𝑧𝐶 = 𝑧 / 𝑥𝐶)
65eqeq1d 2740 . . . . . 6 (𝑥 = 𝑧 → (𝐶 = 𝑦𝑧 / 𝑥𝐶 = 𝑦))
71, 2, 4, 6elrabf 3584 . . . . 5 (𝑧 ∈ {𝑥𝐵𝐶 = 𝑦} ↔ (𝑧𝐵𝑧 / 𝑥𝐶 = 𝑦))
8 ax-1 6 . . . . 5 (𝑧 / 𝑥𝐶 = 𝑦 → (𝑦𝐴𝑧 / 𝑥𝐶 = 𝑦))
97, 8simplbiim 508 . . . 4 (𝑧 ∈ {𝑥𝐵𝐶 = 𝑦} → (𝑦𝐴𝑧 / 𝑥𝐶 = 𝑦))
109impcom 411 . . 3 ((𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}) → 𝑧 / 𝑥𝐶 = 𝑦)
1110rgen2 3115 . 2 𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦
12 invdisj 5014 . 2 (∀𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦})
1311, 12ax-mp 5 1 Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  wral 3053  {crab 3057  csb 3790  Disj wdisj 4995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-disj 4996
This theorem is referenced by:  disjwrdpfx  14151
  Copyright terms: Public domain W3C validator