MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdisjrab Structured version   Visualization version   GIF version

Theorem invdisjrab 5045
Description: The restricted class abstractions {𝑥𝐵𝐶 = 𝑦} for distinct 𝑦𝐴 are disjoint. (Contributed by AV, 6-May-2020.)
Assertion
Ref Expression
invdisjrab Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Distinct variable groups:   𝑥,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem invdisjrab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2977 . . . . . 6 𝑥𝑧
2 nfcv 2977 . . . . . 6 𝑥𝐵
3 nfcsb1v 3907 . . . . . . 7 𝑥𝑧 / 𝑥𝐶
43nfeq1 2993 . . . . . 6 𝑥𝑧 / 𝑥𝐶 = 𝑦
5 csbeq1a 3897 . . . . . . 7 (𝑥 = 𝑧𝐶 = 𝑧 / 𝑥𝐶)
65eqeq1d 2823 . . . . . 6 (𝑥 = 𝑧 → (𝐶 = 𝑦𝑧 / 𝑥𝐶 = 𝑦))
71, 2, 4, 6elrabf 3676 . . . . 5 (𝑧 ∈ {𝑥𝐵𝐶 = 𝑦} ↔ (𝑧𝐵𝑧 / 𝑥𝐶 = 𝑦))
8 ax-1 6 . . . . 5 (𝑧 / 𝑥𝐶 = 𝑦 → (𝑦𝐴𝑧 / 𝑥𝐶 = 𝑦))
97, 8simplbiim 507 . . . 4 (𝑧 ∈ {𝑥𝐵𝐶 = 𝑦} → (𝑦𝐴𝑧 / 𝑥𝐶 = 𝑦))
109impcom 410 . . 3 ((𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}) → 𝑧 / 𝑥𝐶 = 𝑦)
1110rgen2 3203 . 2 𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦
12 invdisj 5043 . 2 (∀𝑦𝐴𝑧 ∈ {𝑥𝐵𝐶 = 𝑦}𝑧 / 𝑥𝐶 = 𝑦Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦})
1311, 12ax-mp 5 1 Disj 𝑦𝐴 {𝑥𝐵𝐶 = 𝑦}
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wral 3138  {crab 3142  csb 3883  Disj wdisj 5024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-disj 5025
This theorem is referenced by:  disjwrdpfx  14056
  Copyright terms: Public domain W3C validator