![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjxwwlksn | Structured version Visualization version GIF version |
Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018.) (Revised by AV, 19-Apr-2021.) (Revised by AV, 27-Oct-2022.) |
Ref | Expression |
---|---|
wwlksnexthasheq.v | β’ π = (VtxβπΊ) |
wwlksnexthasheq.e | β’ πΈ = (EdgβπΊ) |
Ref | Expression |
---|---|
disjxwwlksn | β’ Disj π¦ β (π WWalksN πΊ){π₯ β Word π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . . . 5 β’ (((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ) β (π₯ prefix π) = π¦) | |
2 | 1 | a1i 11 | . . . 4 β’ (π₯ β Word π β (((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ) β (π₯ prefix π) = π¦)) |
3 | 2 | ss2rabi 4074 | . . 3 β’ {π₯ β Word π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} β {π₯ β Word π β£ (π₯ prefix π) = π¦} |
4 | 3 | rgenw 3064 | . 2 β’ βπ¦ β (π WWalksN πΊ){π₯ β Word π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} β {π₯ β Word π β£ (π₯ prefix π) = π¦} |
5 | disjwrdpfx 14655 | . 2 β’ Disj π¦ β (π WWalksN πΊ){π₯ β Word π β£ (π₯ prefix π) = π¦} | |
6 | disjss2 5116 | . 2 β’ (βπ¦ β (π WWalksN πΊ){π₯ β Word π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} β {π₯ β Word π β£ (π₯ prefix π) = π¦} β (Disj π¦ β (π WWalksN πΊ){π₯ β Word π β£ (π₯ prefix π) = π¦} β Disj π¦ β (π WWalksN πΊ){π₯ β Word π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)})) | |
7 | 4, 5, 6 | mp2 9 | 1 β’ Disj π¦ β (π WWalksN πΊ){π₯ β Word π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 {crab 3431 β wss 3948 {cpr 4630 Disj wdisj 5113 βcfv 6543 (class class class)co 7412 0cc0 11114 Word cword 14469 lastSclsw 14517 prefix cpfx 14625 Vtxcvtx 28524 Edgcedg 28575 WWalksN cwwlksn 29348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rmo 3375 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-in 3955 df-ss 3965 df-disj 5114 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |