MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxwwlksn Structured version   Visualization version   GIF version

Theorem disjxwwlksn 27960
Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018.) (Revised by AV, 19-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnexthasheq.v 𝑉 = (Vtx‘𝐺)
wwlksnexthasheq.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
disjxwwlksn Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}
Distinct variable groups:   𝑦,𝑁   𝑥,𝑉   𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑥)   𝑉(𝑦)

Proof of Theorem disjxwwlksn
StepHypRef Expression
1 simp1 1138 . . . . 5 (((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑁) = 𝑦)
21a1i 11 . . . 4 (𝑥 ∈ Word 𝑉 → (((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑁) = 𝑦))
32ss2rabi 3980 . . 3 {𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
43rgenw 3066 . 2 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
5 disjwrdpfx 14248 . 2 Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
6 disjss2 5011 . 2 (∀𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} → (Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} → Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}))
74, 5, 6mp2 9 1 Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2110  wral 3054  {crab 3058  wss 3857  {cpr 4533  Disj wdisj 5008  cfv 6369  (class class class)co 7202  0cc0 10712  Word cword 14052  lastSclsw 14100   prefix cpfx 14218  Vtxcvtx 27059  Edgcedg 27110   WWalksN cwwlksn 27882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ral 3059  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-in 3864  df-ss 3874  df-disj 5009
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator