| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjxwwlksn | Structured version Visualization version GIF version | ||
| Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018.) (Revised by AV, 19-Apr-2021.) (Revised by AV, 27-Oct-2022.) |
| Ref | Expression |
|---|---|
| wwlksnexthasheq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wwlksnexthasheq.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| disjxwwlksn | ⊢ Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . 5 ⊢ (((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑁) = 𝑦) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ Word 𝑉 → (((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑁) = 𝑦)) |
| 3 | 2 | ss2rabi 4052 | . . 3 ⊢ {𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
| 4 | 3 | rgenw 3055 | . 2 ⊢ ∀𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} |
| 5 | disjwrdpfx 14718 | . 2 ⊢ Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} | |
| 6 | disjss2 5089 | . 2 ⊢ (∀𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} → (Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} → Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})) | |
| 7 | 4, 5, 6 | mp2 9 | 1 ⊢ Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⊆ wss 3926 {cpr 4603 Disj wdisj 5086 ‘cfv 6531 (class class class)co 7405 0cc0 11129 Word cword 14531 lastSclsw 14580 prefix cpfx 14688 Vtxcvtx 28975 Edgcedg 29026 WWalksN cwwlksn 29808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rmo 3359 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-ss 3943 df-disj 5087 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |