MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxwwlksn Structured version   Visualization version   GIF version

Theorem disjxwwlksn 29426
Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018.) (Revised by AV, 19-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnexthasheq.v 𝑉 = (Vtxβ€˜πΊ)
wwlksnexthasheq.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
disjxwwlksn Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){π‘₯ ∈ Word 𝑉 ∣ ((π‘₯ prefix 𝑁) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘₯)} ∈ 𝐸)}
Distinct variable groups:   𝑦,𝑁   π‘₯,𝑉   π‘₯,𝑦
Allowed substitution hints:   𝑃(π‘₯,𝑦)   𝐸(π‘₯,𝑦)   𝐺(π‘₯,𝑦)   𝑁(π‘₯)   𝑉(𝑦)

Proof of Theorem disjxwwlksn
StepHypRef Expression
1 simp1 1135 . . . . 5 (((π‘₯ prefix 𝑁) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘₯)} ∈ 𝐸) β†’ (π‘₯ prefix 𝑁) = 𝑦)
21a1i 11 . . . 4 (π‘₯ ∈ Word 𝑉 β†’ (((π‘₯ prefix 𝑁) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘₯)} ∈ 𝐸) β†’ (π‘₯ prefix 𝑁) = 𝑦))
32ss2rabi 4074 . . 3 {π‘₯ ∈ Word 𝑉 ∣ ((π‘₯ prefix 𝑁) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘₯)} ∈ 𝐸)} βŠ† {π‘₯ ∈ Word 𝑉 ∣ (π‘₯ prefix 𝑁) = 𝑦}
43rgenw 3064 . 2 βˆ€π‘¦ ∈ (𝑁 WWalksN 𝐺){π‘₯ ∈ Word 𝑉 ∣ ((π‘₯ prefix 𝑁) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘₯)} ∈ 𝐸)} βŠ† {π‘₯ ∈ Word 𝑉 ∣ (π‘₯ prefix 𝑁) = 𝑦}
5 disjwrdpfx 14655 . 2 Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){π‘₯ ∈ Word 𝑉 ∣ (π‘₯ prefix 𝑁) = 𝑦}
6 disjss2 5116 . 2 (βˆ€π‘¦ ∈ (𝑁 WWalksN 𝐺){π‘₯ ∈ Word 𝑉 ∣ ((π‘₯ prefix 𝑁) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘₯)} ∈ 𝐸)} βŠ† {π‘₯ ∈ Word 𝑉 ∣ (π‘₯ prefix 𝑁) = 𝑦} β†’ (Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){π‘₯ ∈ Word 𝑉 ∣ (π‘₯ prefix 𝑁) = 𝑦} β†’ Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){π‘₯ ∈ Word 𝑉 ∣ ((π‘₯ prefix 𝑁) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘₯)} ∈ 𝐸)}))
74, 5, 6mp2 9 1 Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){π‘₯ ∈ Word 𝑉 ∣ ((π‘₯ prefix 𝑁) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘₯)} ∈ 𝐸)}
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  {crab 3431   βŠ† wss 3948  {cpr 4630  Disj wdisj 5113  β€˜cfv 6543  (class class class)co 7412  0cc0 11114  Word cword 14469  lastSclsw 14517   prefix cpfx 14625  Vtxcvtx 28524  Edgcedg 28575   WWalksN cwwlksn 29348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rmo 3375  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-in 3955  df-ss 3965  df-disj 5114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator