MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxwwlksn Structured version   Visualization version   GIF version

Theorem disjxwwlksn 29937
Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018.) (Revised by AV, 19-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnexthasheq.v 𝑉 = (Vtx‘𝐺)
wwlksnexthasheq.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
disjxwwlksn Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}
Distinct variable groups:   𝑦,𝑁   𝑥,𝑉   𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑥)   𝑉(𝑦)

Proof of Theorem disjxwwlksn
StepHypRef Expression
1 simp1 1136 . . . . 5 (((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑁) = 𝑦)
21a1i 11 . . . 4 (𝑥 ∈ Word 𝑉 → (((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑁) = 𝑦))
32ss2rabi 4100 . . 3 {𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
43rgenw 3071 . 2 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
5 disjwrdpfx 14748 . 2 Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
6 disjss2 5136 . 2 (∀𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} → (Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦} → Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}))
74, 5, 6mp2 9 1 Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 prefix 𝑁) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976  {cpr 4650  Disj wdisj 5133  cfv 6573  (class class class)co 7448  0cc0 11184  Word cword 14562  lastSclsw 14610   prefix cpfx 14718  Vtxcvtx 29031  Edgcedg 29082   WWalksN cwwlksn 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rmo 3388  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-ss 3993  df-disj 5134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator