MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxsuff1eqwrdeq Structured version   Visualization version   GIF version

Theorem pfxsuff1eqwrdeq 14646
Description: Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
pfxsuff1eqwrdeq ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))

Proof of Theorem pfxsuff1eqwrdeq
StepHypRef Expression
1 hashgt0n0 14322 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → 𝑊 ≠ ∅)
2 lennncl 14481 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
31, 2syldan 590 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
433adant2 1128 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
5 fzo0end 13721 . . . 4 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
64, 5syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
7 pfxsuffeqwrdeq 14645 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)))))
86, 7syld3an3 1406 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)))))
9 hashneq0 14321 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
109biimpd 228 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → 𝑊 ≠ ∅))
1110imdistani 568 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
12113adant2 1128 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
1312adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
14 swrdlsw 14614 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
1513, 14syl 17 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
16 breq2 5142 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → (0 < (♯‘𝑊) ↔ 0 < (♯‘𝑈)))
17163anbi3d 1438 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈))))
18 hashneq0 14321 . . . . . . . . . . . . 13 (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) ↔ 𝑈 ≠ ∅))
1918biimpd 228 . . . . . . . . . . . 12 (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) → 𝑈 ≠ ∅))
2019imdistani 568 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 ∈ Word 𝑉𝑈 ≠ ∅))
21203adant1 1127 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 ∈ Word 𝑉𝑈 ≠ ∅))
22 swrdlsw 14614 . . . . . . . . . 10 ((𝑈 ∈ Word 𝑉𝑈 ≠ ∅) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
2321, 22syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
2417, 23syl6bi 253 . . . . . . . 8 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
2524impcom 407 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
26 oveq1 7408 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → ((♯‘𝑊) − 1) = ((♯‘𝑈) − 1))
27 id 22 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → (♯‘𝑊) = (♯‘𝑈))
2826, 27opeq12d 4873 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩ = ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩)
2928oveq2d 7417 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩))
3029eqeq1d 2726 . . . . . . . 8 ((♯‘𝑊) = (♯‘𝑈) → ((𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
3130adantl 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
3225, 31mpbird 257 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩)
3315, 32eqeq12d 2740 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) ↔ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩))
34 fvexd 6896 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑊) ∈ V)
35 fvex 6894 . . . . . 6 (lastS‘𝑈) ∈ V
36 s111 14562 . . . . . 6 (((lastS‘𝑊) ∈ V ∧ (lastS‘𝑈) ∈ V) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
3734, 35, 36sylancl 585 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
3833, 37bitrd 279 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) ↔ (lastS‘𝑊) = (lastS‘𝑈)))
3938anbi2d 628 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)) ↔ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
4039pm5.32da 578 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩))) ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
418, 40bitrd 279 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  Vcvv 3466  c0 4314  cop 4626   class class class wbr 5138  cfv 6533  (class class class)co 7401  0cc0 11106  1c1 11107   < clt 11245  cmin 11441  cn 12209  ..^cfzo 13624  chash 14287  Word cword 14461  lastSclsw 14509  ⟨“cs1 14542   substr csubstr 14587   prefix cpfx 14617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-fz 13482  df-fzo 13625  df-hash 14288  df-word 14462  df-lsw 14510  df-s1 14543  df-substr 14588  df-pfx 14618
This theorem is referenced by:  wwlksnextinj  29622  clwwlkf1  29771
  Copyright terms: Public domain W3C validator