Proof of Theorem pfxsuff1eqwrdeq
| Step | Hyp | Ref
| Expression |
| 1 | | hashgt0n0 14386 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → 𝑊 ≠ ∅) |
| 2 | | lennncl 14554 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈
ℕ) |
| 3 | 1, 2 | syldan 591 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (♯‘𝑊) ∈
ℕ) |
| 4 | 3 | 3adant2 1131 |
. . . 4
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (♯‘𝑊) ∈
ℕ) |
| 5 | | fzo0end 13779 |
. . . 4
⊢
((♯‘𝑊)
∈ ℕ → ((♯‘𝑊) − 1) ∈
(0..^(♯‘𝑊))) |
| 6 | 4, 5 | syl 17 |
. . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈
(0..^(♯‘𝑊))) |
| 7 | | pfxsuffeqwrdeq 14718 |
. . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈
(0..^(♯‘𝑊)))
→ (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr 〈((♯‘𝑊) − 1),
(♯‘𝑊)〉) =
(𝑈 substr
〈((♯‘𝑊)
− 1), (♯‘𝑊)〉))))) |
| 8 | 6, 7 | syld3an3 1410 |
. 2
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr 〈((♯‘𝑊) − 1),
(♯‘𝑊)〉) =
(𝑈 substr
〈((♯‘𝑊)
− 1), (♯‘𝑊)〉))))) |
| 9 | | hashneq0 14385 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅)) |
| 10 | 9 | biimpd 229 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → 𝑊 ≠ ∅)) |
| 11 | 10 | imdistani 568 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅)) |
| 12 | 11 | 3adant2 1131 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅)) |
| 13 | 12 | adantr 480 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅)) |
| 14 | | swrdlsw 14687 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1),
(♯‘𝑊)〉) =
〈“(lastS‘𝑊)”〉) |
| 15 | 13, 14 | syl 17 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 substr 〈((♯‘𝑊) − 1),
(♯‘𝑊)〉) =
〈“(lastS‘𝑊)”〉) |
| 16 | | breq2 5127 |
. . . . . . . . . 10
⊢
((♯‘𝑊) =
(♯‘𝑈) → (0
< (♯‘𝑊)
↔ 0 < (♯‘𝑈))) |
| 17 | 16 | 3anbi3d 1443 |
. . . . . . . . 9
⊢
((♯‘𝑊) =
(♯‘𝑈) →
((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)))) |
| 18 | | hashneq0 14385 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) ↔ 𝑈 ≠ ∅)) |
| 19 | 18 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) → 𝑈 ≠ ∅)) |
| 20 | 19 | imdistani 568 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 ∈ Word 𝑉 ∧ 𝑈 ≠ ∅)) |
| 21 | 20 | 3adant1 1130 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 ∈ Word 𝑉 ∧ 𝑈 ≠ ∅)) |
| 22 | | swrdlsw 14687 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑈 ≠ ∅) → (𝑈 substr 〈((♯‘𝑈) − 1),
(♯‘𝑈)〉) =
〈“(lastS‘𝑈)”〉) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 substr 〈((♯‘𝑈) − 1),
(♯‘𝑈)〉) =
〈“(lastS‘𝑈)”〉) |
| 24 | 17, 23 | biimtrdi 253 |
. . . . . . . 8
⊢
((♯‘𝑊) =
(♯‘𝑈) →
((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑈 substr 〈((♯‘𝑈) − 1),
(♯‘𝑈)〉) =
〈“(lastS‘𝑈)”〉)) |
| 25 | 24 | impcom 407 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr 〈((♯‘𝑈) − 1),
(♯‘𝑈)〉) =
〈“(lastS‘𝑈)”〉) |
| 26 | | oveq1 7420 |
. . . . . . . . . . 11
⊢
((♯‘𝑊) =
(♯‘𝑈) →
((♯‘𝑊) −
1) = ((♯‘𝑈)
− 1)) |
| 27 | | id 22 |
. . . . . . . . . . 11
⊢
((♯‘𝑊) =
(♯‘𝑈) →
(♯‘𝑊) =
(♯‘𝑈)) |
| 28 | 26, 27 | opeq12d 4861 |
. . . . . . . . . 10
⊢
((♯‘𝑊) =
(♯‘𝑈) →
〈((♯‘𝑊)
− 1), (♯‘𝑊)〉 = 〈((♯‘𝑈) − 1),
(♯‘𝑈)〉) |
| 29 | 28 | oveq2d 7429 |
. . . . . . . . 9
⊢
((♯‘𝑊) =
(♯‘𝑈) →
(𝑈 substr
〈((♯‘𝑊)
− 1), (♯‘𝑊)〉) = (𝑈 substr 〈((♯‘𝑈) − 1),
(♯‘𝑈)〉)) |
| 30 | 29 | eqeq1d 2736 |
. . . . . . . 8
⊢
((♯‘𝑊) =
(♯‘𝑈) →
((𝑈 substr
〈((♯‘𝑊)
− 1), (♯‘𝑊)〉) = 〈“(lastS‘𝑈)”〉 ↔ (𝑈 substr
〈((♯‘𝑈)
− 1), (♯‘𝑈)〉) = 〈“(lastS‘𝑈)”〉)) |
| 31 | 30 | adantl 481 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑈 substr 〈((♯‘𝑊) − 1),
(♯‘𝑊)〉) =
〈“(lastS‘𝑈)”〉 ↔ (𝑈 substr 〈((♯‘𝑈) − 1),
(♯‘𝑈)〉) =
〈“(lastS‘𝑈)”〉)) |
| 32 | 25, 31 | mpbird 257 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr 〈((♯‘𝑊) − 1),
(♯‘𝑊)〉) =
〈“(lastS‘𝑈)”〉) |
| 33 | 15, 32 | eqeq12d 2750 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr 〈((♯‘𝑊) − 1),
(♯‘𝑊)〉) =
(𝑈 substr
〈((♯‘𝑊)
− 1), (♯‘𝑊)〉) ↔
〈“(lastS‘𝑊)”〉 =
〈“(lastS‘𝑈)”〉)) |
| 34 | | fvexd 6901 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑊) ∈ V) |
| 35 | | fvex 6899 |
. . . . . 6
⊢
(lastS‘𝑈)
∈ V |
| 36 | | s111 14635 |
. . . . . 6
⊢
(((lastS‘𝑊)
∈ V ∧ (lastS‘𝑈) ∈ V) →
(〈“(lastS‘𝑊)”〉 =
〈“(lastS‘𝑈)”〉 ↔ (lastS‘𝑊) = (lastS‘𝑈))) |
| 37 | 34, 35, 36 | sylancl 586 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) →
(〈“(lastS‘𝑊)”〉 =
〈“(lastS‘𝑈)”〉 ↔ (lastS‘𝑊) = (lastS‘𝑈))) |
| 38 | 33, 37 | bitrd 279 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr 〈((♯‘𝑊) − 1),
(♯‘𝑊)〉) =
(𝑈 substr
〈((♯‘𝑊)
− 1), (♯‘𝑊)〉) ↔ (lastS‘𝑊) = (lastS‘𝑈))) |
| 39 | 38 | anbi2d 630 |
. . 3
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr 〈((♯‘𝑊) − 1),
(♯‘𝑊)〉) =
(𝑈 substr
〈((♯‘𝑊)
− 1), (♯‘𝑊)〉)) ↔ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))) |
| 40 | 39 | pm5.32da 579 |
. 2
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr 〈((♯‘𝑊) − 1),
(♯‘𝑊)〉) =
(𝑈 substr
〈((♯‘𝑊)
− 1), (♯‘𝑊)〉))) ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))) |
| 41 | 8, 40 | bitrd 279 |
1
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))) |