MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxsuff1eqwrdeq Structured version   Visualization version   GIF version

Theorem pfxsuff1eqwrdeq 14743
Description: Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
pfxsuff1eqwrdeq ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))

Proof of Theorem pfxsuff1eqwrdeq
StepHypRef Expression
1 hashgt0n0 14410 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → 𝑊 ≠ ∅)
2 lennncl 14578 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
31, 2syldan 591 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
433adant2 1132 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
5 fzo0end 13803 . . . 4 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
64, 5syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
7 pfxsuffeqwrdeq 14742 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)))))
86, 7syld3an3 1410 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)))))
9 hashneq0 14409 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
109biimpd 229 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → 𝑊 ≠ ∅))
1110imdistani 568 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
12113adant2 1132 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
1312adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
14 swrdlsw 14711 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
1513, 14syl 17 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
16 breq2 5155 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → (0 < (♯‘𝑊) ↔ 0 < (♯‘𝑈)))
17163anbi3d 1443 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈))))
18 hashneq0 14409 . . . . . . . . . . . . 13 (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) ↔ 𝑈 ≠ ∅))
1918biimpd 229 . . . . . . . . . . . 12 (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) → 𝑈 ≠ ∅))
2019imdistani 568 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 ∈ Word 𝑉𝑈 ≠ ∅))
21203adant1 1131 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 ∈ Word 𝑉𝑈 ≠ ∅))
22 swrdlsw 14711 . . . . . . . . . 10 ((𝑈 ∈ Word 𝑉𝑈 ≠ ∅) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
2321, 22syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
2417, 23biimtrdi 253 . . . . . . . 8 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
2524impcom 407 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
26 oveq1 7445 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → ((♯‘𝑊) − 1) = ((♯‘𝑈) − 1))
27 id 22 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → (♯‘𝑊) = (♯‘𝑈))
2826, 27opeq12d 4889 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩ = ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩)
2928oveq2d 7454 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩))
3029eqeq1d 2739 . . . . . . . 8 ((♯‘𝑊) = (♯‘𝑈) → ((𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
3130adantl 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
3225, 31mpbird 257 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩)
3315, 32eqeq12d 2753 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) ↔ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩))
34 fvexd 6929 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑊) ∈ V)
35 fvex 6927 . . . . . 6 (lastS‘𝑈) ∈ V
36 s111 14659 . . . . . 6 (((lastS‘𝑊) ∈ V ∧ (lastS‘𝑈) ∈ V) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
3734, 35, 36sylancl 586 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
3833, 37bitrd 279 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) ↔ (lastS‘𝑊) = (lastS‘𝑈)))
3938anbi2d 630 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)) ↔ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
4039pm5.32da 579 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩))) ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
418, 40bitrd 279 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wne 2940  Vcvv 3481  c0 4342  cop 4640   class class class wbr 5151  cfv 6569  (class class class)co 7438  0cc0 11162  1c1 11163   < clt 11302  cmin 11499  cn 12273  ..^cfzo 13700  chash 14375  Word cword 14558  lastSclsw 14606  ⟨“cs1 14639   substr csubstr 14684   prefix cpfx 14714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-n0 12534  df-xnn0 12607  df-z 12621  df-uz 12886  df-fz 13554  df-fzo 13701  df-hash 14376  df-word 14559  df-lsw 14607  df-s1 14640  df-substr 14685  df-pfx 14715
This theorem is referenced by:  wwlksnextinj  29945  clwwlkf1  30094
  Copyright terms: Public domain W3C validator