MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxsuff1eqwrdeq Structured version   Visualization version   GIF version

Theorem pfxsuff1eqwrdeq 14606
Description: Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
pfxsuff1eqwrdeq ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))

Proof of Theorem pfxsuff1eqwrdeq
StepHypRef Expression
1 hashgt0n0 14272 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → 𝑊 ≠ ∅)
2 lennncl 14441 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
31, 2syldan 591 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
433adant2 1131 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
5 fzo0end 13658 . . . 4 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
64, 5syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
7 pfxsuffeqwrdeq 14605 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)))))
86, 7syld3an3 1411 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)))))
9 hashneq0 14271 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
109biimpd 229 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → 𝑊 ≠ ∅))
1110imdistani 568 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
12113adant2 1131 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
1312adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
14 swrdlsw 14575 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
1513, 14syl 17 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
16 breq2 5093 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → (0 < (♯‘𝑊) ↔ 0 < (♯‘𝑈)))
17163anbi3d 1444 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈))))
18 hashneq0 14271 . . . . . . . . . . . . 13 (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) ↔ 𝑈 ≠ ∅))
1918biimpd 229 . . . . . . . . . . . 12 (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) → 𝑈 ≠ ∅))
2019imdistani 568 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 ∈ Word 𝑉𝑈 ≠ ∅))
21203adant1 1130 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 ∈ Word 𝑉𝑈 ≠ ∅))
22 swrdlsw 14575 . . . . . . . . . 10 ((𝑈 ∈ Word 𝑉𝑈 ≠ ∅) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
2321, 22syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
2417, 23biimtrdi 253 . . . . . . . 8 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
2524impcom 407 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩)
26 oveq1 7353 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → ((♯‘𝑊) − 1) = ((♯‘𝑈) − 1))
27 id 22 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → (♯‘𝑊) = (♯‘𝑈))
2826, 27opeq12d 4830 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩ = ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩)
2928oveq2d 7362 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩))
3029eqeq1d 2733 . . . . . . . 8 ((♯‘𝑊) = (♯‘𝑈) → ((𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
3130adantl 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 1), (♯‘𝑈)⟩) = ⟨“(lastS‘𝑈)”⟩))
3225, 31mpbird 257 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑈)”⟩)
3315, 32eqeq12d 2747 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) ↔ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩))
34 fvexd 6837 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑊) ∈ V)
35 fvex 6835 . . . . . 6 (lastS‘𝑈) ∈ V
36 s111 14523 . . . . . 6 (((lastS‘𝑊) ∈ V ∧ (lastS‘𝑈) ∈ V) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
3734, 35, 36sylancl 586 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
3833, 37bitrd 279 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) ↔ (lastS‘𝑊) = (lastS‘𝑈)))
3938anbi2d 630 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩)) ↔ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
4039pm5.32da 579 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩))) ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
418, 40bitrd 279 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4280  cop 4579   class class class wbr 5089  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   < clt 11146  cmin 11344  cn 12125  ..^cfzo 13554  chash 14237  Word cword 14420  lastSclsw 14469  ⟨“cs1 14503   substr csubstr 14548   prefix cpfx 14578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-lsw 14470  df-s1 14504  df-substr 14549  df-pfx 14579
This theorem is referenced by:  wwlksnextinj  29877  clwwlkf1  30029
  Copyright terms: Public domain W3C validator