MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatpfx Structured version   Visualization version   GIF version

Theorem ccatpfx 14647
Description: Concatenating a prefix with an adjacent subword makes a longer prefix. (Contributed by AV, 7-May-2020.)
Assertion
Ref Expression
ccatpfx ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))

Proof of Theorem ccatpfx
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pfxcl 14623 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝑌) ∈ Word 𝐴)
2 swrdcl 14591 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
3 ccatcl 14520 . . . . . . 7 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
41, 2, 3syl2anc 584 . . . . . 6 (𝑆 ∈ Word 𝐴 → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
5 wrdfn 14474 . . . . . 6 (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴 → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
64, 5syl 17 . . . . 5 (𝑆 ∈ Word 𝐴 → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
76adantr 481 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
8 ccatlen 14521 . . . . . . . . 9 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
91, 2, 8syl2anc 584 . . . . . . . 8 (𝑆 ∈ Word 𝐴 → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
109adantr 481 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
11 fzass4 13535 . . . . . . . . . . 11 ((𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))) ↔ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
1211biimpri 227 . . . . . . . . . 10 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))))
1312simpld 495 . . . . . . . . 9 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑌 ∈ (0...(♯‘𝑆)))
14 pfxlen 14629 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝑌)) = 𝑌)
1513, 14sylan2 593 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 prefix 𝑌)) = 𝑌)
16 swrdlen 14593 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
17163expb 1120 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
1815, 17oveq12d 7423 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = (𝑌 + (𝑍𝑌)))
19 elfzelz 13497 . . . . . . . . . 10 (𝑌 ∈ (0...𝑍) → 𝑌 ∈ ℤ)
2019zcnd 12663 . . . . . . . . 9 (𝑌 ∈ (0...𝑍) → 𝑌 ∈ ℂ)
21 elfzelz 13497 . . . . . . . . . 10 (𝑍 ∈ (0...(♯‘𝑆)) → 𝑍 ∈ ℤ)
2221zcnd 12663 . . . . . . . . 9 (𝑍 ∈ (0...(♯‘𝑆)) → 𝑍 ∈ ℂ)
23 pncan3 11464 . . . . . . . . 9 ((𝑌 ∈ ℂ ∧ 𝑍 ∈ ℂ) → (𝑌 + (𝑍𝑌)) = 𝑍)
2420, 22, 23syl2an 596 . . . . . . . 8 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 + (𝑍𝑌)) = 𝑍)
2524adantl 482 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌 + (𝑍𝑌)) = 𝑍)
2610, 18, 253eqtrd 2776 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = 𝑍)
2726oveq2d 7421 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) = (0..^𝑍))
2827fneq2d 6640 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^𝑍)))
297, 28mpbid 231 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^𝑍))
30 pfxfn 14627 . . . 4 ((𝑆 ∈ Word 𝐴𝑍 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝑍) Fn (0..^𝑍))
3130adantrl 714 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 prefix 𝑍) Fn (0..^𝑍))
32 id 22 . . . . . 6 (𝑥 ∈ (0..^𝑍) → 𝑥 ∈ (0..^𝑍))
3319ad2antrl 726 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℤ)
34 fzospliti 13660 . . . . . 6 ((𝑥 ∈ (0..^𝑍) ∧ 𝑌 ∈ ℤ) → (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍)))
3532, 33, 34syl2anr 597 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍)))
361ad2antrr 724 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (𝑆 prefix 𝑌) ∈ Word 𝐴)
372ad2antrr 724 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
3815oveq2d 7421 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘(𝑆 prefix 𝑌))) = (0..^𝑌))
3938eleq2d 2819 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌))) ↔ 𝑥 ∈ (0..^𝑌)))
4039biimpar 478 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → 𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌))))
41 ccatval1 14523 . . . . . . . 8 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌)))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 prefix 𝑌)‘𝑥))
4236, 37, 40, 41syl3anc 1371 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 prefix 𝑌)‘𝑥))
43 simpl 483 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴)
4413adantl 482 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆)))
45 id 22 . . . . . . . 8 (𝑥 ∈ (0..^𝑌) → 𝑥 ∈ (0..^𝑌))
46 pfxfv 14628 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑥 ∈ (0..^𝑌)) → ((𝑆 prefix 𝑌)‘𝑥) = (𝑆𝑥))
4743, 44, 45, 46syl2an3an 1422 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → ((𝑆 prefix 𝑌)‘𝑥) = (𝑆𝑥))
4842, 47eqtrd 2772 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
491ad2antrr 724 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆 prefix 𝑌) ∈ Word 𝐴)
502ad2antrr 724 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
5118, 25eqtrd 2772 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = 𝑍)
5215, 51oveq12d 7423 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) = (𝑌..^𝑍))
5352eleq2d 2819 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ 𝑥 ∈ (𝑌..^𝑍)))
5453biimpar 478 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → 𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))))
55 ccatval2 14524 . . . . . . . 8 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))))
5649, 50, 54, 55syl3anc 1371 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))))
57 id 22 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
58573expb 1120 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
5915oveq2d 7421 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) = (𝑥𝑌))
6059adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) = (𝑥𝑌))
61 id 22 . . . . . . . . . . 11 (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ (𝑌..^𝑍))
62 fzosubel 13687 . . . . . . . . . . 11 ((𝑥 ∈ (𝑌..^𝑍) ∧ 𝑌 ∈ ℤ) → (𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)))
6361, 33, 62syl2anr 597 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)))
6420subidd 11555 . . . . . . . . . . . . . 14 (𝑌 ∈ (0...𝑍) → (𝑌𝑌) = 0)
6564oveq1d 7420 . . . . . . . . . . . . 13 (𝑌 ∈ (0...𝑍) → ((𝑌𝑌)..^(𝑍𝑌)) = (0..^(𝑍𝑌)))
6665eleq2d 2819 . . . . . . . . . . . 12 (𝑌 ∈ (0...𝑍) → ((𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)) ↔ (𝑥𝑌) ∈ (0..^(𝑍𝑌))))
6766ad2antrl 726 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)) ↔ (𝑥𝑌) ∈ (0..^(𝑍𝑌))))
6867adantr 481 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)) ↔ (𝑥𝑌) ∈ (0..^(𝑍𝑌))))
6963, 68mpbid 231 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥𝑌) ∈ (0..^(𝑍𝑌)))
7060, 69eqeltrd 2833 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) ∈ (0..^(𝑍𝑌)))
71 swrdfv 14594 . . . . . . . 8 (((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ (𝑥 − (♯‘(𝑆 prefix 𝑌))) ∈ (0..^(𝑍𝑌))) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))) = (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌)))
7258, 70, 71syl2an2r 683 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))) = (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌)))
7359oveq1d 7420 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = ((𝑥𝑌) + 𝑌))
7473adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = ((𝑥𝑌) + 𝑌))
75 elfzoelz 13628 . . . . . . . . . . 11 (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ ℤ)
7675zcnd 12663 . . . . . . . . . 10 (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ ℂ)
7720ad2antrl 726 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℂ)
78 npcan 11465 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑥𝑌) + 𝑌) = 𝑥)
7976, 77, 78syl2anr 597 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥𝑌) + 𝑌) = 𝑥)
8074, 79eqtrd 2772 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = 𝑥)
8180fveq2d 6892 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌)) = (𝑆𝑥))
8256, 72, 813eqtrd 2776 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
8348, 82jaodan 956 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
8435, 83syldan 591 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
85 pfxfv 14628 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑍 ∈ (0...(♯‘𝑆)) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆𝑥))
86853expa 1118 . . . . 5 (((𝑆 ∈ Word 𝐴𝑍 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆𝑥))
8786adantlrl 718 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆𝑥))
8884, 87eqtr4d 2775 . . 3 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 prefix 𝑍)‘𝑥))
8929, 31, 88eqfnfvd 7032 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))
90893impb 1115 1 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  cop 4633   Fn wfn 6535  cfv 6540  (class class class)co 7405  cc 11104  0cc0 11106   + caddc 11109  cmin 11440  cz 12554  ...cfz 13480  ..^cfzo 13623  chash 14286  Word cword 14460   ++ cconcat 14516   substr csubstr 14586   prefix cpfx 14616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-substr 14587  df-pfx 14617
This theorem is referenced by:  pfxcctswrd  14656  wrdeqs1cat  14666  splid  14699  splval2  14703  efgredleme  19605  efgredlemc  19607  efgcpbllemb  19617  frgpuplem  19634  wrdsplex  32091
  Copyright terms: Public domain W3C validator