MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatpfx Structured version   Visualization version   GIF version

Theorem ccatpfx 14414
Description: Concatenating a prefix with an adjacent subword makes a longer prefix. (Contributed by AV, 7-May-2020.)
Assertion
Ref Expression
ccatpfx ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))

Proof of Theorem ccatpfx
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pfxcl 14390 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝑌) ∈ Word 𝐴)
2 swrdcl 14358 . . . . . . 7 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
3 ccatcl 14277 . . . . . . 7 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
41, 2, 3syl2anc 584 . . . . . 6 (𝑆 ∈ Word 𝐴 → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
5 wrdfn 14231 . . . . . 6 (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴 → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
64, 5syl 17 . . . . 5 (𝑆 ∈ Word 𝐴 → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
76adantr 481 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
8 ccatlen 14278 . . . . . . . . 9 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
91, 2, 8syl2anc 584 . . . . . . . 8 (𝑆 ∈ Word 𝐴 → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
109adantr 481 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
11 fzass4 13294 . . . . . . . . . . 11 ((𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))) ↔ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
1211biimpri 227 . . . . . . . . . 10 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))))
1312simpld 495 . . . . . . . . 9 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑌 ∈ (0...(♯‘𝑆)))
14 pfxlen 14396 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝑌)) = 𝑌)
1513, 14sylan2 593 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 prefix 𝑌)) = 𝑌)
16 swrdlen 14360 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
17163expb 1119 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
1815, 17oveq12d 7293 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = (𝑌 + (𝑍𝑌)))
19 elfzelz 13256 . . . . . . . . . 10 (𝑌 ∈ (0...𝑍) → 𝑌 ∈ ℤ)
2019zcnd 12427 . . . . . . . . 9 (𝑌 ∈ (0...𝑍) → 𝑌 ∈ ℂ)
21 elfzelz 13256 . . . . . . . . . 10 (𝑍 ∈ (0...(♯‘𝑆)) → 𝑍 ∈ ℤ)
2221zcnd 12427 . . . . . . . . 9 (𝑍 ∈ (0...(♯‘𝑆)) → 𝑍 ∈ ℂ)
23 pncan3 11229 . . . . . . . . 9 ((𝑌 ∈ ℂ ∧ 𝑍 ∈ ℂ) → (𝑌 + (𝑍𝑌)) = 𝑍)
2420, 22, 23syl2an 596 . . . . . . . 8 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 + (𝑍𝑌)) = 𝑍)
2524adantl 482 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌 + (𝑍𝑌)) = 𝑍)
2610, 18, 253eqtrd 2782 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = 𝑍)
2726oveq2d 7291 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) = (0..^𝑍))
2827fneq2d 6527 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^𝑍)))
297, 28mpbid 231 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^𝑍))
30 pfxfn 14394 . . . 4 ((𝑆 ∈ Word 𝐴𝑍 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝑍) Fn (0..^𝑍))
3130adantrl 713 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 prefix 𝑍) Fn (0..^𝑍))
32 id 22 . . . . . 6 (𝑥 ∈ (0..^𝑍) → 𝑥 ∈ (0..^𝑍))
3319ad2antrl 725 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℤ)
34 fzospliti 13419 . . . . . 6 ((𝑥 ∈ (0..^𝑍) ∧ 𝑌 ∈ ℤ) → (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍)))
3532, 33, 34syl2anr 597 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍)))
361ad2antrr 723 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (𝑆 prefix 𝑌) ∈ Word 𝐴)
372ad2antrr 723 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
3815oveq2d 7291 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘(𝑆 prefix 𝑌))) = (0..^𝑌))
3938eleq2d 2824 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌))) ↔ 𝑥 ∈ (0..^𝑌)))
4039biimpar 478 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → 𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌))))
41 ccatval1 14281 . . . . . . . 8 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(𝑆 prefix 𝑌)))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 prefix 𝑌)‘𝑥))
4236, 37, 40, 41syl3anc 1370 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 prefix 𝑌)‘𝑥))
43 simpl 483 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴)
4413adantl 482 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆)))
45 id 22 . . . . . . . 8 (𝑥 ∈ (0..^𝑌) → 𝑥 ∈ (0..^𝑌))
46 pfxfv 14395 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑥 ∈ (0..^𝑌)) → ((𝑆 prefix 𝑌)‘𝑥) = (𝑆𝑥))
4743, 44, 45, 46syl2an3an 1421 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → ((𝑆 prefix 𝑌)‘𝑥) = (𝑆𝑥))
4842, 47eqtrd 2778 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑌)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
491ad2antrr 723 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆 prefix 𝑌) ∈ Word 𝐴)
502ad2antrr 723 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
5118, 25eqtrd 2778 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = 𝑍)
5215, 51oveq12d 7293 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) = (𝑌..^𝑍))
5352eleq2d 2824 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ 𝑥 ∈ (𝑌..^𝑍)))
5453biimpar 478 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → 𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))))
55 ccatval2 14283 . . . . . . . 8 (((𝑆 prefix 𝑌) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ ((♯‘(𝑆 prefix 𝑌))..^((♯‘(𝑆 prefix 𝑌)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))))
5649, 50, 54, 55syl3anc 1370 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))))
57 id 22 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
58573expb 1119 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
5915oveq2d 7291 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) = (𝑥𝑌))
6059adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) = (𝑥𝑌))
61 id 22 . . . . . . . . . . 11 (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ (𝑌..^𝑍))
62 fzosubel 13446 . . . . . . . . . . 11 ((𝑥 ∈ (𝑌..^𝑍) ∧ 𝑌 ∈ ℤ) → (𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)))
6361, 33, 62syl2anr 597 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)))
6420subidd 11320 . . . . . . . . . . . . . 14 (𝑌 ∈ (0...𝑍) → (𝑌𝑌) = 0)
6564oveq1d 7290 . . . . . . . . . . . . 13 (𝑌 ∈ (0...𝑍) → ((𝑌𝑌)..^(𝑍𝑌)) = (0..^(𝑍𝑌)))
6665eleq2d 2824 . . . . . . . . . . . 12 (𝑌 ∈ (0...𝑍) → ((𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)) ↔ (𝑥𝑌) ∈ (0..^(𝑍𝑌))))
6766ad2antrl 725 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)) ↔ (𝑥𝑌) ∈ (0..^(𝑍𝑌))))
6867adantr 481 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥𝑌) ∈ ((𝑌𝑌)..^(𝑍𝑌)) ↔ (𝑥𝑌) ∈ (0..^(𝑍𝑌))))
6963, 68mpbid 231 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥𝑌) ∈ (0..^(𝑍𝑌)))
7060, 69eqeltrd 2839 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑥 − (♯‘(𝑆 prefix 𝑌))) ∈ (0..^(𝑍𝑌)))
71 swrdfv 14361 . . . . . . . 8 (((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ (𝑥 − (♯‘(𝑆 prefix 𝑌))) ∈ (0..^(𝑍𝑌))) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))) = (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌)))
7258, 70, 71syl2an2r 682 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 prefix 𝑌)))) = (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌)))
7359oveq1d 7290 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = ((𝑥𝑌) + 𝑌))
7473adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = ((𝑥𝑌) + 𝑌))
75 elfzoelz 13387 . . . . . . . . . . 11 (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ ℤ)
7675zcnd 12427 . . . . . . . . . 10 (𝑥 ∈ (𝑌..^𝑍) → 𝑥 ∈ ℂ)
7720ad2antrl 725 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℂ)
78 npcan 11230 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑥𝑌) + 𝑌) = 𝑥)
7976, 77, 78syl2anr 597 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥𝑌) + 𝑌) = 𝑥)
8074, 79eqtrd 2778 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → ((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌) = 𝑥)
8180fveq2d 6778 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (𝑆‘((𝑥 − (♯‘(𝑆 prefix 𝑌))) + 𝑌)) = (𝑆𝑥))
8256, 72, 813eqtrd 2782 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (𝑌..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
8348, 82jaodan 955 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ (𝑥 ∈ (0..^𝑌) ∨ 𝑥 ∈ (𝑌..^𝑍))) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
8435, 83syldan 591 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆𝑥))
85 pfxfv 14395 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑍 ∈ (0...(♯‘𝑆)) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆𝑥))
86853expa 1117 . . . . 5 (((𝑆 ∈ Word 𝐴𝑍 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆𝑥))
8786adantlrl 717 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → ((𝑆 prefix 𝑍)‘𝑥) = (𝑆𝑥))
8884, 87eqtr4d 2781 . . 3 (((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^𝑍)) → (((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 prefix 𝑍)‘𝑥))
8929, 31, 88eqfnfvd 6912 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))
90893impb 1114 1 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  cop 4567   Fn wfn 6428  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874  cmin 11205  cz 12319  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   ++ cconcat 14273   substr csubstr 14353   prefix cpfx 14383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384
This theorem is referenced by:  pfxcctswrd  14423  wrdeqs1cat  14433  splid  14466  splval2  14470  efgredleme  19349  efgredlemc  19351  efgcpbllemb  19361  frgpuplem  19378  wrdsplex  31212
  Copyright terms: Public domain W3C validator