MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxwwlkn Structured version   Visualization version   GIF version

Theorem disjxwwlkn 29801
Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
disjxwwlkn Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑦,𝐸   𝑥,𝑁,𝑦   𝑦,𝑃   𝑦,𝑋   𝑦,𝑌   𝑥,𝑤,𝐺   𝑦,𝑀   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑤)   𝐺(𝑦)   𝑀(𝑥,𝑤)   𝑋(𝑤)   𝑌(𝑥,𝑤)

Proof of Theorem disjxwwlkn
StepHypRef Expression
1 simp1 1133 . . . . . 6 (((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑀) = 𝑦)
21a1i 11 . . . . 5 (𝑥𝑋 → (((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑀) = 𝑦))
32ss2rabi 4070 . . . 4 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦}
4 wwlksnextprop.x . . . . . 6 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
5 wwlkssswwlksn 29754 . . . . . . 7 ((𝑁 + 1) WWalksN 𝐺) ⊆ (WWalks‘𝐺)
6 eqid 2725 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
76wwlkssswrd 29750 . . . . . . 7 (WWalks‘𝐺) ⊆ Word (Vtx‘𝐺)
85, 7sstri 3986 . . . . . 6 ((𝑁 + 1) WWalksN 𝐺) ⊆ Word (Vtx‘𝐺)
94, 8eqsstri 4011 . . . . 5 𝑋 ⊆ Word (Vtx‘𝐺)
10 rabss2 4071 . . . . 5 (𝑋 ⊆ Word (Vtx‘𝐺) → {𝑥𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦})
119, 10ax-mp 5 . . . 4 {𝑥𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦}
123, 11sstri 3986 . . 3 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦}
1312rgenw 3054 . 2 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦}
14 disjwrdpfx 14691 . 2 Disj 𝑦𝑌 {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦}
15 disjss2 5117 . 2 (∀𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} → (Disj 𝑦𝑌 {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} → Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}))
1613, 14, 15mp2 9 1 Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  wral 3050  {crab 3418  wss 3944  {cpr 4632  Disj wdisj 5114  cfv 6549  (class class class)co 7419  0cc0 11145  1c1 11146   + caddc 11148  Word cword 14505  lastSclsw 14553   prefix cpfx 14661  Vtxcvtx 28886  Edgcedg 28937  WWalkscwwlks 29713   WWalksN cwwlksn 29714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-hash 14331  df-word 14506  df-wwlks 29718  df-wwlksn 29719
This theorem is referenced by:  hashwwlksnext  29802
  Copyright terms: Public domain W3C validator