MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxwwlkn Structured version   Visualization version   GIF version

Theorem disjxwwlkn 28386
Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
disjxwwlkn Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑦,𝐸   𝑥,𝑁,𝑦   𝑦,𝑃   𝑦,𝑋   𝑦,𝑌   𝑥,𝑤,𝐺   𝑦,𝑀   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑤)   𝐺(𝑦)   𝑀(𝑥,𝑤)   𝑋(𝑤)   𝑌(𝑥,𝑤)

Proof of Theorem disjxwwlkn
StepHypRef Expression
1 simp1 1135 . . . . . 6 (((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑀) = 𝑦)
21a1i 11 . . . . 5 (𝑥𝑋 → (((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑀) = 𝑦))
32ss2rabi 4020 . . . 4 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦}
4 wwlksnextprop.x . . . . . 6 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
5 wwlkssswwlksn 28339 . . . . . . 7 ((𝑁 + 1) WWalksN 𝐺) ⊆ (WWalks‘𝐺)
6 eqid 2737 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
76wwlkssswrd 28335 . . . . . . 7 (WWalks‘𝐺) ⊆ Word (Vtx‘𝐺)
85, 7sstri 3939 . . . . . 6 ((𝑁 + 1) WWalksN 𝐺) ⊆ Word (Vtx‘𝐺)
94, 8eqsstri 3964 . . . . 5 𝑋 ⊆ Word (Vtx‘𝐺)
10 rabss2 4021 . . . . 5 (𝑋 ⊆ Word (Vtx‘𝐺) → {𝑥𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦})
119, 10ax-mp 5 . . . 4 {𝑥𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦}
123, 11sstri 3939 . . 3 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦}
1312rgenw 3066 . 2 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦}
14 disjwrdpfx 14482 . 2 Disj 𝑦𝑌 {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦}
15 disjss2 5053 . 2 (∀𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} → (Disj 𝑦𝑌 {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} → Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}))
1613, 14, 15mp2 9 1 Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wral 3062  {crab 3404  wss 3896  {cpr 4571  Disj wdisj 5050  cfv 6463  (class class class)co 7313  0cc0 10941  1c1 10942   + caddc 10944  Word cword 14286  lastSclsw 14334   prefix cpfx 14452  Vtxcvtx 27474  Edgcedg 27525  WWalkscwwlks 28298   WWalksN cwwlksn 28299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-disj 5051  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-er 8544  df-map 8663  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-n0 12304  df-z 12390  df-uz 12653  df-fz 13310  df-fzo 13453  df-hash 14115  df-word 14287  df-wwlks 28303  df-wwlksn 28304
This theorem is referenced by:  hashwwlksnext  28387
  Copyright terms: Public domain W3C validator