| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjxwwlkn | Structured version Visualization version GIF version | ||
| Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 26-Oct-2022.) |
| Ref | Expression |
|---|---|
| wwlksnextprop.x | ⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) |
| wwlksnextprop.e | ⊢ 𝐸 = (Edg‘𝐺) |
| wwlksnextprop.y | ⊢ 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} |
| Ref | Expression |
|---|---|
| disjxwwlkn | ⊢ Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1137 | . . . . . 6 ⊢ (((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑀) = 𝑦) | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → (((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑀) = 𝑦)) |
| 3 | 2 | ss2rabi 4077 | . . . 4 ⊢ {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ 𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦} |
| 4 | wwlksnextprop.x | . . . . . 6 ⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) | |
| 5 | wwlkssswwlksn 29886 | . . . . . . 7 ⊢ ((𝑁 + 1) WWalksN 𝐺) ⊆ (WWalks‘𝐺) | |
| 6 | eqid 2737 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 7 | 6 | wwlkssswrd 29882 | . . . . . . 7 ⊢ (WWalks‘𝐺) ⊆ Word (Vtx‘𝐺) |
| 8 | 5, 7 | sstri 3993 | . . . . . 6 ⊢ ((𝑁 + 1) WWalksN 𝐺) ⊆ Word (Vtx‘𝐺) |
| 9 | 4, 8 | eqsstri 4030 | . . . . 5 ⊢ 𝑋 ⊆ Word (Vtx‘𝐺) |
| 10 | rabss2 4078 | . . . . 5 ⊢ (𝑋 ⊆ Word (Vtx‘𝐺) → {𝑥 ∈ 𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦}) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ {𝑥 ∈ 𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} |
| 12 | 3, 11 | sstri 3993 | . . 3 ⊢ {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} |
| 13 | 12 | rgenw 3065 | . 2 ⊢ ∀𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} |
| 14 | disjwrdpfx 14738 | . 2 ⊢ Disj 𝑦 ∈ 𝑌 {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} | |
| 15 | disjss2 5113 | . 2 ⊢ (∀𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} → (Disj 𝑦 ∈ 𝑌 {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})) | |
| 16 | 13, 14, 15 | mp2 9 | 1 ⊢ Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {crab 3436 ⊆ wss 3951 {cpr 4628 Disj wdisj 5110 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 + caddc 11158 Word cword 14552 lastSclsw 14600 prefix cpfx 14708 Vtxcvtx 29013 Edgcedg 29064 WWalkscwwlks 29845 WWalksN cwwlksn 29846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-wwlks 29850 df-wwlksn 29851 |
| This theorem is referenced by: hashwwlksnext 29934 |
| Copyright terms: Public domain | W3C validator |