| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjxwwlkn | Structured version Visualization version GIF version | ||
| Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 26-Oct-2022.) |
| Ref | Expression |
|---|---|
| wwlksnextprop.x | ⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) |
| wwlksnextprop.e | ⊢ 𝐸 = (Edg‘𝐺) |
| wwlksnextprop.y | ⊢ 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} |
| Ref | Expression |
|---|---|
| disjxwwlkn | ⊢ Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . 6 ⊢ (((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑀) = 𝑦) | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → (((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 prefix 𝑀) = 𝑦)) |
| 3 | 2 | ss2rabi 4023 | . . . 4 ⊢ {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ 𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦} |
| 4 | wwlksnextprop.x | . . . . . 6 ⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) | |
| 5 | wwlkssswwlksn 29844 | . . . . . . 7 ⊢ ((𝑁 + 1) WWalksN 𝐺) ⊆ (WWalks‘𝐺) | |
| 6 | eqid 2731 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 7 | 6 | wwlkssswrd 29840 | . . . . . . 7 ⊢ (WWalks‘𝐺) ⊆ Word (Vtx‘𝐺) |
| 8 | 5, 7 | sstri 3939 | . . . . . 6 ⊢ ((𝑁 + 1) WWalksN 𝐺) ⊆ Word (Vtx‘𝐺) |
| 9 | 4, 8 | eqsstri 3976 | . . . . 5 ⊢ 𝑋 ⊆ Word (Vtx‘𝐺) |
| 10 | rabss2 4024 | . . . . 5 ⊢ (𝑋 ⊆ Word (Vtx‘𝐺) → {𝑥 ∈ 𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦}) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ {𝑥 ∈ 𝑋 ∣ (𝑥 prefix 𝑀) = 𝑦} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} |
| 12 | 3, 11 | sstri 3939 | . . 3 ⊢ {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} |
| 13 | 12 | rgenw 3051 | . 2 ⊢ ∀𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} |
| 14 | disjwrdpfx 14607 | . 2 ⊢ Disj 𝑦 ∈ 𝑌 {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} | |
| 15 | disjss2 5059 | . 2 ⊢ (∀𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} → (Disj 𝑦 ∈ 𝑌 {𝑥 ∈ Word (Vtx‘𝐺) ∣ (𝑥 prefix 𝑀) = 𝑦} → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})) | |
| 16 | 13, 14, 15 | mp2 9 | 1 ⊢ Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ ((𝑥 prefix 𝑀) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 {cpr 4575 Disj wdisj 5056 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 Word cword 14420 lastSclsw 14469 prefix cpfx 14578 Vtxcvtx 28974 Edgcedg 29025 WWalkscwwlks 29803 WWalksN cwwlksn 29804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-wwlks 29808 df-wwlksn 29809 |
| This theorem is referenced by: hashwwlksnext 29892 |
| Copyright terms: Public domain | W3C validator |