![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjxwwlkn | Structured version Visualization version GIF version |
Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 26-Oct-2022.) |
Ref | Expression |
---|---|
wwlksnextprop.x | β’ π = ((π + 1) WWalksN πΊ) |
wwlksnextprop.e | β’ πΈ = (EdgβπΊ) |
wwlksnextprop.y | β’ π = {π€ β (π WWalksN πΊ) β£ (π€β0) = π} |
Ref | Expression |
---|---|
disjxwwlkn | β’ Disj π¦ β π {π₯ β π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . . . . 6 β’ (((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ) β (π₯ prefix π) = π¦) | |
2 | 1 | a1i 11 | . . . . 5 β’ (π₯ β π β (((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ) β (π₯ prefix π) = π¦)) |
3 | 2 | ss2rabi 4074 | . . . 4 β’ {π₯ β π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} β {π₯ β π β£ (π₯ prefix π) = π¦} |
4 | wwlksnextprop.x | . . . . . 6 β’ π = ((π + 1) WWalksN πΊ) | |
5 | wwlkssswwlksn 29388 | . . . . . . 7 β’ ((π + 1) WWalksN πΊ) β (WWalksβπΊ) | |
6 | eqid 2731 | . . . . . . . 8 β’ (VtxβπΊ) = (VtxβπΊ) | |
7 | 6 | wwlkssswrd 29384 | . . . . . . 7 β’ (WWalksβπΊ) β Word (VtxβπΊ) |
8 | 5, 7 | sstri 3991 | . . . . . 6 β’ ((π + 1) WWalksN πΊ) β Word (VtxβπΊ) |
9 | 4, 8 | eqsstri 4016 | . . . . 5 β’ π β Word (VtxβπΊ) |
10 | rabss2 4075 | . . . . 5 β’ (π β Word (VtxβπΊ) β {π₯ β π β£ (π₯ prefix π) = π¦} β {π₯ β Word (VtxβπΊ) β£ (π₯ prefix π) = π¦}) | |
11 | 9, 10 | ax-mp 5 | . . . 4 β’ {π₯ β π β£ (π₯ prefix π) = π¦} β {π₯ β Word (VtxβπΊ) β£ (π₯ prefix π) = π¦} |
12 | 3, 11 | sstri 3991 | . . 3 β’ {π₯ β π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} β {π₯ β Word (VtxβπΊ) β£ (π₯ prefix π) = π¦} |
13 | 12 | rgenw 3064 | . 2 β’ βπ¦ β π {π₯ β π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} β {π₯ β Word (VtxβπΊ) β£ (π₯ prefix π) = π¦} |
14 | disjwrdpfx 14655 | . 2 β’ Disj π¦ β π {π₯ β Word (VtxβπΊ) β£ (π₯ prefix π) = π¦} | |
15 | disjss2 5116 | . 2 β’ (βπ¦ β π {π₯ β π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} β {π₯ β Word (VtxβπΊ) β£ (π₯ prefix π) = π¦} β (Disj π¦ β π {π₯ β Word (VtxβπΊ) β£ (π₯ prefix π) = π¦} β Disj π¦ β π {π₯ β π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)})) | |
16 | 13, 14, 15 | mp2 9 | 1 β’ Disj π¦ β π {π₯ β π β£ ((π₯ prefix π) = π¦ β§ (π¦β0) = π β§ {(lastSβπ¦), (lastSβπ₯)} β πΈ)} |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 {crab 3431 β wss 3948 {cpr 4630 Disj wdisj 5113 βcfv 6543 (class class class)co 7412 0cc0 11114 1c1 11115 + caddc 11117 Word cword 14469 lastSclsw 14517 prefix cpfx 14625 Vtxcvtx 28524 Edgcedg 28575 WWalkscwwlks 29347 WWalksN cwwlksn 29348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-wwlks 29352 df-wwlksn 29353 |
This theorem is referenced by: hashwwlksnext 29436 |
Copyright terms: Public domain | W3C validator |