Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjeq1f | Structured version Visualization version GIF version |
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjss1f.1 | ⊢ Ⅎ𝑥𝐴 |
disjss1f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
disjeq1f | ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3989 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | disjss1f.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | disjss1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | disjss1f 31198 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶)) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶)) |
6 | eqimss 3988 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
7 | 3, 2 | disjss1f 31198 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
9 | 5, 8 | impbid 211 | 1 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 Ⅎwnfc 2884 ⊆ wss 3898 Disj wdisj 5057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-rmo 3349 df-v 3443 df-in 3905 df-ss 3915 df-disj 5058 |
This theorem is referenced by: ldgenpisyslem1 32429 |
Copyright terms: Public domain | W3C validator |