| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjeq1f | Structured version Visualization version GIF version | ||
| Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjss1f.1 | ⊢ Ⅎ𝑥𝐴 |
| disjss1f.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| disjeq1f | ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 4023 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 2 | disjss1f.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | disjss1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | disjss1f 32521 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶)) |
| 6 | eqimss 4022 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 7 | 3, 2 | disjss1f 32521 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
| 9 | 5, 8 | impbid 212 | 1 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 Ⅎwnfc 2882 ⊆ wss 3931 Disj wdisj 5090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-mo 2538 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rmo 3363 df-ss 3948 df-disj 5091 |
| This theorem is referenced by: ldgenpisyslem1 34139 |
| Copyright terms: Public domain | W3C validator |