![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2eq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
dp2eq1 | ⊢ (𝐴 = 𝐵 → _𝐴𝐶 = _𝐵𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7442 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 + (𝐶 / ;10)) = (𝐵 + (𝐶 / ;10))) | |
2 | df-dp2 32852 | . 2 ⊢ _𝐴𝐶 = (𝐴 + (𝐶 / ;10)) | |
3 | df-dp2 32852 | . 2 ⊢ _𝐵𝐶 = (𝐵 + (𝐶 / ;10)) | |
4 | 1, 2, 3 | 3eqtr4g 2801 | 1 ⊢ (𝐴 = 𝐵 → _𝐴𝐶 = _𝐵𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 (class class class)co 7435 0cc0 11159 1c1 11160 + caddc 11162 / cdiv 11924 ;cdc 12737 _cdp2 32851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-iota 6519 df-fv 6574 df-ov 7438 df-dp2 32852 |
This theorem is referenced by: dp2eq1i 32855 |
Copyright terms: Public domain | W3C validator |