Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq1 Structured version   Visualization version   GIF version

Theorem dp2eq1 32839
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dp2eq1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)

Proof of Theorem dp2eq1
StepHypRef Expression
1 oveq1 7457 . 2 (𝐴 = 𝐵 → (𝐴 + (𝐶 / 10)) = (𝐵 + (𝐶 / 10)))
2 df-dp2 32838 . 2 𝐴𝐶 = (𝐴 + (𝐶 / 10))
3 df-dp2 32838 . 2 𝐵𝐶 = (𝐵 + (𝐶 / 10))
41, 2, 33eqtr4g 2805 1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  (class class class)co 7450  0cc0 11186  1c1 11187   + caddc 11189   / cdiv 11949  cdc 12760  cdp2 32837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583  df-ov 7453  df-dp2 32838
This theorem is referenced by:  dp2eq1i  32841
  Copyright terms: Public domain W3C validator