Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq1 Structured version   Visualization version   GIF version

Theorem dp2eq1 32034
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dp2eq1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)

Proof of Theorem dp2eq1
StepHypRef Expression
1 oveq1 7415 . 2 (𝐴 = 𝐵 → (𝐴 + (𝐶 / 10)) = (𝐵 + (𝐶 / 10)))
2 df-dp2 32033 . 2 𝐴𝐶 = (𝐴 + (𝐶 / 10))
3 df-dp2 32033 . 2 𝐵𝐶 = (𝐵 + (𝐶 / 10))
41, 2, 33eqtr4g 2797 1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  (class class class)co 7408  0cc0 11109  1c1 11110   + caddc 11112   / cdiv 11870  cdc 12676  cdp2 32032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-dp2 32033
This theorem is referenced by:  dp2eq1i  32036
  Copyright terms: Public domain W3C validator