| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2eq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| dp2eq1 | ⊢ (𝐴 = 𝐵 → _𝐴𝐶 = _𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7419 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 + (𝐶 / ;10)) = (𝐵 + (𝐶 / ;10))) | |
| 2 | df-dp2 32785 | . 2 ⊢ _𝐴𝐶 = (𝐴 + (𝐶 / ;10)) | |
| 3 | df-dp2 32785 | . 2 ⊢ _𝐵𝐶 = (𝐵 + (𝐶 / ;10)) | |
| 4 | 1, 2, 3 | 3eqtr4g 2794 | 1 ⊢ (𝐴 = 𝐵 → _𝐴𝐶 = _𝐵𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 (class class class)co 7412 0cc0 11136 1c1 11137 + caddc 11139 / cdiv 11901 ;cdc 12715 _cdp2 32784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6493 df-fv 6548 df-ov 7415 df-dp2 32785 |
| This theorem is referenced by: dp2eq1i 32788 |
| Copyright terms: Public domain | W3C validator |