Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq1 Structured version   Visualization version   GIF version

Theorem dp2eq1 31049
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dp2eq1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)

Proof of Theorem dp2eq1
StepHypRef Expression
1 oveq1 7262 . 2 (𝐴 = 𝐵 → (𝐴 + (𝐶 / 10)) = (𝐵 + (𝐶 / 10)))
2 df-dp2 31048 . 2 𝐴𝐶 = (𝐴 + (𝐶 / 10))
3 df-dp2 31048 . 2 𝐵𝐶 = (𝐵 + (𝐶 / 10))
41, 2, 33eqtr4g 2804 1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   / cdiv 11562  cdc 12366  cdp2 31047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-dp2 31048
This theorem is referenced by:  dp2eq1i  31051
  Copyright terms: Public domain W3C validator