Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq2 Structured version   Visualization version   GIF version

Theorem dp2eq2 31256
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dp2eq2 (𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)

Proof of Theorem dp2eq2
StepHypRef Expression
1 oveq1 7322 . . 3 (𝐴 = 𝐵 → (𝐴 / 10) = (𝐵 / 10))
21oveq2d 7331 . 2 (𝐴 = 𝐵 → (𝐶 + (𝐴 / 10)) = (𝐶 + (𝐵 / 10)))
3 df-dp2 31254 . 2 𝐶𝐴 = (𝐶 + (𝐴 / 10))
4 df-dp2 31254 . 2 𝐶𝐵 = (𝐶 + (𝐵 / 10))
52, 3, 43eqtr4g 2802 1 (𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  (class class class)co 7315  0cc0 10944  1c1 10945   + caddc 10947   / cdiv 11705  cdc 12510  cdp2 31253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-iota 6417  df-fv 6473  df-ov 7318  df-dp2 31254
This theorem is referenced by:  dp2eq2i  31258
  Copyright terms: Public domain W3C validator