Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq2 Structured version   Visualization version   GIF version

Theorem dp2eq2 32794
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dp2eq2 (𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)

Proof of Theorem dp2eq2
StepHypRef Expression
1 oveq1 7394 . . 3 (𝐴 = 𝐵 → (𝐴 / 10) = (𝐵 / 10))
21oveq2d 7403 . 2 (𝐴 = 𝐵 → (𝐶 + (𝐴 / 10)) = (𝐶 + (𝐵 / 10)))
3 df-dp2 32792 . 2 𝐶𝐴 = (𝐶 + (𝐴 / 10))
4 df-dp2 32792 . 2 𝐶𝐵 = (𝐶 + (𝐵 / 10))
52, 3, 43eqtr4g 2789 1 (𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071   / cdiv 11835  cdc 12649  cdp2 32791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-dp2 32792
This theorem is referenced by:  dp2eq2i  32796
  Copyright terms: Public domain W3C validator