Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq2 Structured version   Visualization version   GIF version

Theorem dp2eq2 32787
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dp2eq2 (𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)

Proof of Theorem dp2eq2
StepHypRef Expression
1 oveq1 7419 . . 3 (𝐴 = 𝐵 → (𝐴 / 10) = (𝐵 / 10))
21oveq2d 7428 . 2 (𝐴 = 𝐵 → (𝐶 + (𝐴 / 10)) = (𝐶 + (𝐵 / 10)))
3 df-dp2 32785 . 2 𝐶𝐴 = (𝐶 + (𝐴 / 10))
4 df-dp2 32785 . 2 𝐶𝐵 = (𝐶 + (𝐵 / 10))
52, 3, 43eqtr4g 2794 1 (𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  (class class class)co 7412  0cc0 11136  1c1 11137   + caddc 11139   / cdiv 11901  cdc 12715  cdp2 32784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6493  df-fv 6548  df-ov 7415  df-dp2 32785
This theorem is referenced by:  dp2eq2i  32789
  Copyright terms: Public domain W3C validator