Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
dp2eq2 | ⊢ (𝐴 = 𝐵 → _𝐶𝐴 = _𝐶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7322 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 / ;10) = (𝐵 / ;10)) | |
2 | 1 | oveq2d 7331 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 + (𝐴 / ;10)) = (𝐶 + (𝐵 / ;10))) |
3 | df-dp2 31254 | . 2 ⊢ _𝐶𝐴 = (𝐶 + (𝐴 / ;10)) | |
4 | df-dp2 31254 | . 2 ⊢ _𝐶𝐵 = (𝐶 + (𝐵 / ;10)) | |
5 | 2, 3, 4 | 3eqtr4g 2802 | 1 ⊢ (𝐴 = 𝐵 → _𝐶𝐴 = _𝐶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 (class class class)co 7315 0cc0 10944 1c1 10945 + caddc 10947 / cdiv 11705 ;cdc 12510 _cdp2 31253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-iota 6417 df-fv 6473 df-ov 7318 df-dp2 31254 |
This theorem is referenced by: dp2eq2i 31258 |
Copyright terms: Public domain | W3C validator |