Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq2 Structured version   Visualization version   GIF version

Theorem dp2eq2 32802
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dp2eq2 (𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)

Proof of Theorem dp2eq2
StepHypRef Expression
1 oveq1 7401 . . 3 (𝐴 = 𝐵 → (𝐴 / 10) = (𝐵 / 10))
21oveq2d 7410 . 2 (𝐴 = 𝐵 → (𝐶 + (𝐴 / 10)) = (𝐶 + (𝐵 / 10)))
3 df-dp2 32800 . 2 𝐶𝐴 = (𝐶 + (𝐴 / 10))
4 df-dp2 32800 . 2 𝐶𝐵 = (𝐶 + (𝐵 / 10))
52, 3, 43eqtr4g 2790 1 (𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  (class class class)co 7394  0cc0 11086  1c1 11087   + caddc 11089   / cdiv 11851  cdc 12665  cdp2 32799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527  df-ov 7397  df-dp2 32800
This theorem is referenced by:  dp2eq2i  32804
  Copyright terms: Public domain W3C validator