Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq1i Structured version   Visualization version   GIF version

Theorem dp2eq1i 30580
 Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Hypothesis
Ref Expression
dp2eq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
dp2eq1i 𝐴𝐶 = 𝐵𝐶

Proof of Theorem dp2eq1i
StepHypRef Expression
1 dp2eq1i.1 . 2 𝐴 = 𝐵
2 dp2eq1 30578 . 2 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
31, 2ax-mp 5 1 𝐴𝐶 = 𝐵𝐶
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538  _cdp2 30576 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-v 3446  df-un 3889  df-in 3891  df-ss 3901  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-iota 6287  df-fv 6336  df-ov 7142  df-dp2 30577 This theorem is referenced by:  dp2eq12i  30582
 Copyright terms: Public domain W3C validator