Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq1 | Structured version Visualization version GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
oveq1 | ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4801 | . . 3 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
2 | 1 | fveq2d 6760 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹‘〈𝐴, 𝐶〉) = (𝐹‘〈𝐵, 𝐶〉)) |
3 | df-ov 7258 | . 2 ⊢ (𝐴𝐹𝐶) = (𝐹‘〈𝐴, 𝐶〉) | |
4 | df-ov 7258 | . 2 ⊢ (𝐵𝐹𝐶) = (𝐹‘〈𝐵, 𝐶〉) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) |
Copyright terms: Public domain | W3C validator |