Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq12i Structured version   Visualization version   GIF version

Theorem dp2eq12i 32841
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Hypotheses
Ref Expression
dp2eq1i.1 𝐴 = 𝐵
dp2eq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
dp2eq12i 𝐴𝐶 = 𝐵𝐷

Proof of Theorem dp2eq12i
StepHypRef Expression
1 dp2eq1i.1 . . 3 𝐴 = 𝐵
21dp2eq1i 32839 . 2 𝐴𝐶 = 𝐵𝐶
3 dp2eq12i.2 . . 3 𝐶 = 𝐷
43dp2eq2i 32840 . 2 𝐵𝐶 = 𝐵𝐷
52, 4eqtri 2768 1 𝐴𝐶 = 𝐵𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdp2 32835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-dp2 32836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator