Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq12i Structured version   Visualization version   GIF version

Theorem dp2eq12i 32805
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Hypotheses
Ref Expression
dp2eq1i.1 𝐴 = 𝐵
dp2eq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
dp2eq12i 𝐴𝐶 = 𝐵𝐷

Proof of Theorem dp2eq12i
StepHypRef Expression
1 dp2eq1i.1 . . 3 𝐴 = 𝐵
21dp2eq1i 32803 . 2 𝐴𝐶 = 𝐵𝐶
3 dp2eq12i.2 . . 3 𝐶 = 𝐷
43dp2eq2i 32804 . 2 𝐵𝐶 = 𝐵𝐷
52, 4eqtri 2753 1 𝐴𝐶 = 𝐵𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdp2 32799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527  df-ov 7397  df-dp2 32800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator