Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq12i Structured version   Visualization version   GIF version

Theorem dp2eq12i 32844
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Hypotheses
Ref Expression
dp2eq1i.1 𝐴 = 𝐵
dp2eq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
dp2eq12i 𝐴𝐶 = 𝐵𝐷

Proof of Theorem dp2eq12i
StepHypRef Expression
1 dp2eq1i.1 . . 3 𝐴 = 𝐵
21dp2eq1i 32842 . 2 𝐴𝐶 = 𝐵𝐶
3 dp2eq12i.2 . . 3 𝐶 = 𝐷
43dp2eq2i 32843 . 2 𝐵𝐶 = 𝐵𝐷
52, 4eqtri 2763 1 𝐴𝐶 = 𝐵𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdp2 32838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-dp2 32839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator