![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2eq12i | Structured version Visualization version GIF version |
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
dp2eq1i.1 | ⊢ 𝐴 = 𝐵 |
dp2eq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
dp2eq12i | ⊢ _𝐴𝐶 = _𝐵𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp2eq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | dp2eq1i 32041 | . 2 ⊢ _𝐴𝐶 = _𝐵𝐶 |
3 | dp2eq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | dp2eq2i 32042 | . 2 ⊢ _𝐵𝐶 = _𝐵𝐷 |
5 | 2, 4 | eqtri 2761 | 1 ⊢ _𝐴𝐶 = _𝐵𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 _cdp2 32037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-dp2 32038 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |