Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq12i Structured version   Visualization version   GIF version

Theorem dp2eq12i 31151
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Hypotheses
Ref Expression
dp2eq1i.1 𝐴 = 𝐵
dp2eq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
dp2eq12i 𝐴𝐶 = 𝐵𝐷

Proof of Theorem dp2eq12i
StepHypRef Expression
1 dp2eq1i.1 . . 3 𝐴 = 𝐵
21dp2eq1i 31149 . 2 𝐴𝐶 = 𝐵𝐶
3 dp2eq12i.2 . . 3 𝐶 = 𝐷
43dp2eq2i 31150 . 2 𝐵𝐶 = 𝐵𝐷
52, 4eqtri 2766 1 𝐴𝐶 = 𝐵𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdp2 31145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-dp2 31146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator