Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq2i Structured version   Visualization version   GIF version

Theorem dp2eq2i 31435
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Hypothesis
Ref Expression
dp2eq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
dp2eq2i 𝐶𝐴 = 𝐶𝐵

Proof of Theorem dp2eq2i
StepHypRef Expression
1 dp2eq1i.1 . 2 𝐴 = 𝐵
2 dp2eq2 31433 . 2 (𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
31, 2ax-mp 5 1 𝐶𝐴 = 𝐶𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdp2 31430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-iota 6436  df-fv 6492  df-ov 7345  df-dp2 31431
This theorem is referenced by:  dp2eq12i  31436  hgt750lem2  32930
  Copyright terms: Public domain W3C validator