Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp2eq2i Structured version   Visualization version   GIF version

Theorem dp2eq2i 31052
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
Hypothesis
Ref Expression
dp2eq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
dp2eq2i 𝐶𝐴 = 𝐶𝐵

Proof of Theorem dp2eq2i
StepHypRef Expression
1 dp2eq1i.1 . 2 𝐴 = 𝐵
2 dp2eq2 31050 . 2 (𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
31, 2ax-mp 5 1 𝐶𝐴 = 𝐶𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdp2 31047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-dp2 31048
This theorem is referenced by:  dp2eq12i  31053  hgt750lem2  32532
  Copyright terms: Public domain W3C validator