Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2eq2i | Structured version Visualization version GIF version |
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
dp2eq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
dp2eq2i | ⊢ _𝐶𝐴 = _𝐶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp2eq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | dp2eq2 31433 | . 2 ⊢ (𝐴 = 𝐵 → _𝐶𝐴 = _𝐶𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ _𝐶𝐴 = _𝐶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 _cdp2 31430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-iota 6436 df-fv 6492 df-ov 7345 df-dp2 31431 |
This theorem is referenced by: dp2eq12i 31436 hgt750lem2 32930 |
Copyright terms: Public domain | W3C validator |